def test_inv(self): reg = regularization.Tikhonov(self.mesh) opt = optimization.InexactGaussNewton(maxIter=10, use_WolfeCurvature=True) invProb = inverse_problem.BaseInvProblem(self.dmiscombo, reg, opt) directives_list = [ directives.ScalingMultipleDataMisfits_ByEig(verbose=True), directives.AlphasSmoothEstimate_ByEig(verbose=True), directives.BetaEstimate_ByEig(beta0_ratio=1e-2), directives.MultiTargetMisfits(TriggerSmall=False), directives.BetaSchedule(), ] inv = inversion.BaseInversion(invProb, directiveList=directives_list) m0 = self.model.mean() * np.ones_like(self.model) mrec = inv.run(m0)
def setUp(self): print("\n ---- Testing {} ---- \n".format(self.formulation)) cs = 12.5 hx = [(cs, 2, -1.3), (cs, 61), (cs, 2, 1.3)] hy = [(cs, 2, -1.3), (cs, 20)] mesh = discretize.TensorMesh([hx, hy], x0="CN") x = np.linspace(-135, 250.0, 20) M = utils.ndgrid(x - 12.5, np.r_[0.0]) N = utils.ndgrid(x + 12.5, np.r_[0.0]) A0loc = np.r_[-150, 0.0] A1loc = np.r_[-130, 0.0] # rxloc = [np.c_[M, np.zeros(20)], np.c_[N, np.zeros(20)]] rx1 = dc.receivers.Dipole(M, N) rx2 = dc.receivers.Dipole(M, N, data_type="apparent_resistivity") src0 = dc.sources.Pole([rx1, rx2], A0loc) src1 = dc.sources.Pole([rx1, rx2], A1loc) survey = dc.survey.Survey([src0, src1]) survey.set_geometric_factor() simulation = getattr(dc, self.formulation)( mesh, rhoMap=maps.IdentityMap(mesh), storeJ=self.storeJ, solver=Solver, survey=survey, ) mSynth = np.ones(mesh.nC) * 1.0 data = simulation.make_synthetic_data(mSynth, add_noise=True) # Now set up the problem to do some minimization dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data) reg = regularization.Tikhonov(mesh) opt = optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e0) inv = inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = simulation self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis self.data = data
def setUp(self): aSpacing = 2.5 nElecs = 5 surveySize = nElecs * aSpacing - aSpacing cs = surveySize / nElecs / 4 mesh = discretize.TensorMesh( [ [(cs, 10, -1.3), (cs, surveySize / cs), (cs, 10, 1.3)], [(cs, 3, -1.3), (cs, 3, 1.3)], # [(cs, 5, -1.3), (cs, 10)] ], "CN", ) source_list = dc.utils.WennerSrcList(nElecs, aSpacing, in2D=True) survey = dc.survey.Survey(source_list) simulation = dc.simulation.Simulation3DCellCentered( mesh=mesh, survey=survey, rhoMap=maps.IdentityMap(mesh), storeJ=True) mSynth = np.ones(mesh.nC) dobs = simulation.make_synthetic_data(mSynth, add_noise=True) # Now set up the problem to do some minimization dmis = data_misfit.L2DataMisfit(simulation=simulation, data=dobs) reg = regularization.Tikhonov(mesh) opt = optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = simulation self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis self.dobs = dobs
def test_inv_mref_setting(self): reg1 = regularization.Tikhonov(self.mesh) reg2 = regularization.Tikhonov(self.mesh) reg = reg1 + reg2 opt = optimization.ProjectedGNCG( maxIter=10, lower=-10, upper=10, maxIterLS=20, maxIterCG=50, tolCG=1e-4 ) invProb = inverse_problem.BaseInvProblem(self.dmiscombo, reg, opt) directives_list = [ directives.ScalingMultipleDataMisfits_ByEig(chi0_ratio=[0.01, 1.0], verbose=True), directives.AlphasSmoothEstimate_ByEig(verbose=True), directives.BetaEstimate_ByEig(beta0_ratio=1e-2), directives.BetaSchedule(), ] inv = inversion.BaseInversion(invProb, directiveList=directives_list) m0 = self.model.mean() * np.ones_like(self.model) mrec = inv.run(m0) self.assertTrue(np.all(reg1.mref == m0)) self.assertTrue(np.all(reg2.mref == m0))
def run(plotIt=True): # Define the inducing field parameter H0 = (50000, 90, 0) # Create a mesh dx = 5.0 hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)] hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)] hzind = [(dx, 5, -1.3), (dx, 10)] mesh = TensorMesh([hxind, hyind, hzind], "CCC") # Get index of the center midx = int(mesh.nCx / 2) midy = int(mesh.nCy / 2) # Lets create a simple Gaussian topo and set the active cells [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy) zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1] # We would usually load a topofile topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)] # Go from topo to array of indices of active cells actv = utils.surface2ind_topo(mesh, topo, "N") actv = np.where(actv)[0] nC = len(actv) # Create and array of observation points xr = np.linspace(-20.0, 20.0, 20) yr = np.linspace(-20.0, 20.0, 20) X, Y = np.meshgrid(xr, yr) # Move the observation points 5m above the topo Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5.0 # Create a MAGsurvey rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)] rxLoc = magnetics.receivers.Point(rxLoc, components=["tmi"]) srcField = magnetics.sources.SourceField(receiver_list=[rxLoc], parameters=H0) survey = magnetics.survey.Survey(srcField) # We can now create a susceptibility model and generate data # Here a simple block in half-space model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz)) model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.02 model = utils.mkvc(model) model = model[actv] # Create active map to go from reduce set to full actvMap = maps.InjectActiveCells(mesh, actv, -100) # Create reduced identity map idenMap = maps.IdentityMap(nP=nC) # Create the forward model operator simulation = magnetics.simulation.Simulation3DIntegral( survey=survey, mesh=mesh, chiMap=idenMap, actInd=actv, ) # Compute linear forward operator and compute some data d = simulation.dpred(model) # Add noise and uncertainties # We add some random Gaussian noise (1nT) synthetic_data = d + np.random.randn(len(d)) wd = np.ones(len(synthetic_data)) * 1.0 # Assign flat uncertainties data_object = data.Data(survey, dobs=synthetic_data, noise_floor=wd) # Create a regularization reg = regularization.Sparse(mesh, indActive=actv, mapping=idenMap) reg.mref = np.zeros(nC) reg.norms = np.c_[0, 0, 0, 0] # reg.eps_p, reg.eps_q = 1e-0, 1e-0 # Create sensitivity weights from our linear forward operator rxLoc = survey.source_field.receiver_list[0].locations m0 = np.ones(nC) * 1e-4 # Starting model # Data misfit function dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_object) dmis.W = 1 / wd # Add directives to the inversion opt = optimization.ProjectedGNCG(maxIter=20, lower=0.0, upper=1.0, maxIterLS=20, maxIterCG=20, tolCG=1e-3) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e-1) # Here is where the norms are applied # Use pick a threshold parameter empirically based on the distribution of # model parameters IRLS = directives.Update_IRLS(f_min_change=1e-3, max_irls_iterations=40) saveDict = directives.SaveOutputEveryIteration(save_txt=False) update_Jacobi = directives.UpdatePreconditioner() # Add sensitivity weights sensitivity_weights = directives.UpdateSensitivityWeights(everyIter=False) inv = inversion.BaseInversion( invProb, directiveList=[ sensitivity_weights, IRLS, betaest, update_Jacobi, saveDict ], ) # Run the inversion mrec = inv.run(m0) if plotIt: # Here is the recovered susceptibility model ypanel = midx zpanel = -5 m_l2 = actvMap * invProb.l2model m_l2[m_l2 == -100] = np.nan m_lp = actvMap * mrec m_lp[m_lp == -100] = np.nan m_true = actvMap * model m_true[m_true == -100] = np.nan # Plot the data utils.plot_utils.plot2Ddata(rxLoc, d) plt.figure() # Plot L2 model ax = plt.subplot(321) mesh.plotSlice( m_l2, ax=ax, normal="Z", ind=zpanel, grid=True, clim=(model.min(), model.max()), ) plt.plot( ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color="w", ) plt.title("Plan l2-model.") plt.gca().set_aspect("equal") plt.ylabel("y") ax.xaxis.set_visible(False) plt.gca().set_aspect("equal", adjustable="box") # Vertica section ax = plt.subplot(322) mesh.plotSlice( m_l2, ax=ax, normal="Y", ind=midx, grid=True, clim=(model.min(), model.max()), ) plt.plot( ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color="w", ) plt.title("E-W l2-model.") plt.gca().set_aspect("equal") ax.xaxis.set_visible(False) plt.ylabel("z") plt.gca().set_aspect("equal", adjustable="box") # Plot Lp model ax = plt.subplot(323) mesh.plotSlice( m_lp, ax=ax, normal="Z", ind=zpanel, grid=True, clim=(model.min(), model.max()), ) plt.plot( ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color="w", ) plt.title("Plan lp-model.") plt.gca().set_aspect("equal") ax.xaxis.set_visible(False) plt.ylabel("y") plt.gca().set_aspect("equal", adjustable="box") # Vertical section ax = plt.subplot(324) mesh.plotSlice( m_lp, ax=ax, normal="Y", ind=midx, grid=True, clim=(model.min(), model.max()), ) plt.plot( ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color="w", ) plt.title("E-W lp-model.") plt.gca().set_aspect("equal") ax.xaxis.set_visible(False) plt.ylabel("z") plt.gca().set_aspect("equal", adjustable="box") # Plot True model ax = plt.subplot(325) mesh.plotSlice( m_true, ax=ax, normal="Z", ind=zpanel, grid=True, clim=(model.min(), model.max()), ) plt.plot( ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color="w", ) plt.title("Plan true model.") plt.gca().set_aspect("equal") plt.xlabel("x") plt.ylabel("y") plt.gca().set_aspect("equal", adjustable="box") # Vertical section ax = plt.subplot(326) mesh.plotSlice( m_true, ax=ax, normal="Y", ind=midx, grid=True, clim=(model.min(), model.max()), ) plt.plot( ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color="w", ) plt.title("E-W true model.") plt.gca().set_aspect("equal") plt.xlabel("x") plt.ylabel("z") plt.gca().set_aspect("equal", adjustable="box") # Plot convergence curves fig, axs = plt.figure(), plt.subplot() axs.plot(saveDict.phi_d, "k", lw=2) axs.plot( np.r_[IRLS.iterStart, IRLS.iterStart], np.r_[0, np.max(saveDict.phi_d)], "k:", ) twin = axs.twinx() twin.plot(saveDict.phi_m, "k--", lw=2) axs.text( IRLS.iterStart, 0, "IRLS Steps", va="bottom", ha="center", rotation="vertical", size=12, bbox={"facecolor": "white"}, ) axs.set_ylabel("$\phi_d$", size=16, rotation=0) axs.set_xlabel("Iterations", size=14) twin.set_ylabel("$\phi_m$", size=16, rotation=0)
def setUp(self): np.random.seed(0) H0 = (50000.0, 90.0, 0.0) # The magnetization is set along a different # direction (induced + remanence) M = np.array([45.0, 90.0]) # Create grid of points for topography # Lets create a simple Gaussian topo # and set the active cells [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50), np.linspace(-200, 200, 50)) b = 100 A = 50 zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0)) # We would usually load a topofile topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)] # Create and array of observation points xr = np.linspace(-100.0, 100.0, 20) yr = np.linspace(-100.0, 100.0, 20) X, Y = np.meshgrid(xr, yr) Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 5 # Create a MAGsurvey xyzLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)] rxLoc = mag.Point(xyzLoc) srcField = mag.SourceField([rxLoc], parameters=H0) survey = mag.Survey(srcField) # Create a mesh h = [5, 5, 5] padDist = np.ones((3, 2)) * 100 mesh = mesh_builder_xyz(xyzLoc, h, padding_distance=padDist, depth_core=100, mesh_type="tree") mesh = refine_tree_xyz(mesh, topo, method="surface", octree_levels=[4, 4], finalize=True) self.mesh = mesh # Define an active cells from topo actv = utils.surface2ind_topo(mesh, topo) nC = int(actv.sum()) model = np.zeros((mesh.nC, 3)) # Convert the inclination declination to vector in Cartesian M_xyz = utils.mat_utils.dip_azimuth2cartesian(M[0], M[1]) # Get the indicies of the magnetized block ind = utils.model_builder.getIndicesBlock( np.r_[-20, -20, -10], np.r_[20, 20, 25], mesh.gridCC, )[0] # Assign magnetization values model[ind, :] = np.kron(np.ones((ind.shape[0], 1)), M_xyz * 0.05) # Remove air cells self.model = model[actv, :] # Create active map to go from reduce set to full self.actvMap = maps.InjectActiveCells(mesh, actv, np.nan) # Creat reduced identity map idenMap = maps.IdentityMap(nP=nC * 3) # Create the forward model operator sim = mag.Simulation3DIntegral( self.mesh, survey=survey, model_type="vector", chiMap=idenMap, actInd=actv, store_sensitivities="disk", ) self.sim = sim # Compute some data and add some random noise data = sim.make_synthetic_data(utils.mkvc(self.model), relative_error=0.0, noise_floor=5.0, add_noise=True) # This Mapping connects the regularizations for the three-component # vector model wires = maps.Wires(("p", nC), ("s", nC), ("t", nC)) # Create three regularization for the different components # of magnetization reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.p) reg_p.mref = np.zeros(3 * nC) reg_s = regularization.Sparse(mesh, indActive=actv, mapping=wires.s) reg_s.mref = np.zeros(3 * nC) reg_t = regularization.Sparse(mesh, indActive=actv, mapping=wires.t) reg_t.mref = np.zeros(3 * nC) reg = reg_p + reg_s + reg_t reg.mref = np.zeros(3 * nC) # Data misfit function dmis = data_misfit.L2DataMisfit(simulation=sim, data=data) # dmis.W = 1./survey.std # Add directives to the inversion opt = optimization.ProjectedGNCG(maxIter=10, lower=-10, upper=10.0, maxIterLS=5, maxIterCG=5, tolCG=1e-4) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) # A list of directive to control the inverson betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e1) # Here is where the norms are applied # Use pick a treshold parameter empirically based on the distribution of # model parameters IRLS = directives.Update_IRLS(f_min_change=1e-3, max_irls_iterations=0, beta_tol=5e-1) # Pre-conditioner update_Jacobi = directives.UpdatePreconditioner() sensitivity_weights = directives.UpdateSensitivityWeights( everyIter=False) inv = inversion.BaseInversion( invProb, directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest]) # Run the inversion m0 = np.ones(3 * nC) * 1e-4 # Starting model mrec_MVIC = inv.run(m0) sim.chiMap = maps.SphericalSystem(nP=nC * 3) self.mstart = sim.chiMap.inverse(mrec_MVIC) dmis.simulation.model = self.mstart beta = invProb.beta # Create a block diagonal regularization wires = maps.Wires(("amp", nC), ("theta", nC), ("phi", nC)) # Create a Combo Regularization # Regularize the amplitude of the vectors reg_a = regularization.Sparse(mesh, indActive=actv, mapping=wires.amp) reg_a.norms = np.c_[0.0, 0.0, 0.0, 0.0] # Sparse on the model and its gradients reg_a.mref = np.zeros(3 * nC) # Regularize the vertical angle of the vectors reg_t = regularization.Sparse(mesh, indActive=actv, mapping=wires.theta) reg_t.alpha_s = 0.0 # No reference angle reg_t.space = "spherical" reg_t.norms = np.c_[2.0, 0.0, 0.0, 0.0] # Only norm on gradients used # Regularize the horizontal angle of the vectors reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.phi) reg_p.alpha_s = 0.0 # No reference angle reg_p.space = "spherical" reg_p.norms = np.c_[2.0, 0.0, 0.0, 0.0] # Only norm on gradients used reg = reg_a + reg_t + reg_p reg.mref = np.zeros(3 * nC) Lbound = np.kron(np.asarray([0, -np.inf, -np.inf]), np.ones(nC)) Ubound = np.kron(np.asarray([10, np.inf, np.inf]), np.ones(nC)) # Add directives to the inversion opt = optimization.ProjectedGNCG( maxIter=5, lower=Lbound, upper=Ubound, maxIterLS=5, maxIterCG=5, tolCG=1e-3, stepOffBoundsFact=1e-3, ) opt.approxHinv = None invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=beta) # Here is where the norms are applied IRLS = directives.Update_IRLS( f_min_change=1e-4, max_irls_iterations=5, minGNiter=1, beta_tol=0.5, coolingRate=1, coolEps_q=True, sphericalDomain=True, ) # Special directive specific to the mag amplitude problem. The sensitivity # weights are update between each iteration. ProjSpherical = directives.ProjectSphericalBounds() sensitivity_weights = directives.UpdateSensitivityWeights() update_Jacobi = directives.UpdatePreconditioner() self.inv = inversion.BaseInversion( invProb, directiveList=[ ProjSpherical, IRLS, sensitivity_weights, update_Jacobi ], )
def setUp(self): ndv = -100 # Create a self.mesh dx = 5.0 hxind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)] hyind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)] hzind = [(dx, 5, -1.3), (dx, 6)] self.mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC") # Get index of the center midx = int(self.mesh.nCx / 2) midy = int(self.mesh.nCy / 2) # Lets create a simple Gaussian topo and set the active cells [xx, yy] = np.meshgrid(self.mesh.vectorNx, self.mesh.vectorNy) zz = -np.exp((xx**2 + yy**2) / 75**2) + self.mesh.vectorNz[-1] # Go from topo to actv cells topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)] actv = utils.surface2ind_topo(self.mesh, topo, "N") actv = np.where(actv)[0] # Create active map to go from reduce space to full self.actvMap = maps.InjectActiveCells(self.mesh, actv, -100) nC = len(actv) # Create and array of observation points xr = np.linspace(-20.0, 20.0, 20) yr = np.linspace(-20.0, 20.0, 20) X, Y = np.meshgrid(xr, yr) # Move the observation points 5m above the topo Z = -np.exp((X**2 + Y**2) / 75**2) + self.mesh.vectorNz[-1] + 5.0 # Create a MAGsurvey locXYZ = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)] rxLoc = gravity.Point(locXYZ) srcField = gravity.SourceField([rxLoc]) survey = gravity.Survey(srcField) # We can now create a density model and generate data # Here a simple block in half-space model = np.zeros((self.mesh.nCx, self.mesh.nCy, self.mesh.nCz)) model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.5 model = utils.mkvc(model) self.model = model[actv] # Create active map to go from reduce set to full actvMap = maps.InjectActiveCells(self.mesh, actv, ndv) # Create reduced identity map idenMap = maps.IdentityMap(nP=nC) # Create the forward model operator sim = gravity.Simulation3DIntegral( self.mesh, survey=survey, rhoMap=idenMap, actInd=actv, store_sensitivities="ram", ) # Compute linear forward operator and compute some data # computing sensitivities to ram is best using dask processes with dask.config.set(scheduler="processes"): data = sim.make_synthetic_data(self.model, relative_error=0.0, noise_floor=0.001, add_noise=True) print(sim.G) # Create a regularization reg = regularization.Sparse(self.mesh, indActive=actv, mapping=idenMap) reg.norms = np.c_[0, 0, 0, 0] reg.gradientType = "component" # reg.eps_p, reg.eps_q = 5e-2, 1e-2 # Data misfit function dmis = data_misfit.L2DataMisfit(simulation=sim, data=data) # Add directives to the inversion opt = optimization.ProjectedGNCG(maxIter=100, lower=-1.0, upper=1.0, maxIterLS=20, maxIterCG=10, tolCG=1e-3) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e8) # Here is where the norms are applied IRLS = directives.Update_IRLS(f_min_change=1e-4, minGNiter=1) update_Jacobi = directives.UpdatePreconditioner() sensitivity_weights = directives.UpdateSensitivityWeights( everyIter=False) self.inv = inversion.BaseInversion( invProb, directiveList=[IRLS, sensitivity_weights, update_Jacobi]) self.sim = sim
def run(plotIt=True): cs, ncx, ncz, npad = 5.0, 25, 15, 15 hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = discretize.CylMesh([hx, 1, hz], "00C") active = mesh.vectorCCz < 0.0 layer = (mesh.vectorCCz < 0.0) & (mesh.vectorCCz >= -100.0) actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap sig_half = 2e-3 sig_air = 1e-8 sig_layer = 1e-3 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer mtrue = np.log(sigma[active]) rxOffset = 1e-3 rx = time_domain.Rx.PointMagneticFluxTimeDerivative( np.array([[rxOffset, 0.0, 30]]), np.logspace(-5, -3, 31), "z" ) src = time_domain.Src.MagDipole([rx], location=np.array([0.0, 0.0, 80])) survey = time_domain.Survey([src]) time_steps = [(1e-06, 20), (1e-05, 20), (0.0001, 20)] simulation = time_domain.Simulation3DElectricField( mesh, sigmaMap=mapping, survey=survey, time_steps=time_steps ) # d_true = simulation.dpred(mtrue) # create observed data rel_err = 0.05 data = simulation.make_synthetic_data(mtrue, relative_error=rel_err) dmisfit = data_misfit.L2DataMisfit(simulation=simulation, data=data) regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Tikhonov(regMesh, alpha_s=1e-2, alpha_x=1.0) opt = optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Create an inversion object beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0) inv = inversion.BaseInversion(invProb, directiveList=[beta, betaest]) m0 = np.log(np.ones(mtrue.size) * sig_half) simulation.counter = opt.counter = utils.Counter() opt.remember("xc") mopt = inv.run(m0) if plotIt: fig, ax = plt.subplots(1, 2, figsize=(10, 6)) ax[0].loglog(rx.times, -invProb.dpred, "b.-") ax[0].loglog(rx.times, -data.dobs, "r.-") ax[0].legend(("Noisefree", "$d^{obs}$"), fontsize=16) ax[0].set_xlabel("Time (s)", fontsize=14) ax[0].set_ylabel("$B_z$ (T)", fontsize=16) ax[0].set_xlabel("Time (s)", fontsize=14) ax[0].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5) plt.semilogx(sigma[active], mesh.vectorCCz[active]) plt.semilogx(np.exp(mopt), mesh.vectorCCz[active]) ax[1].set_ylim(-600, 0) ax[1].set_xlim(1e-4, 1e-2) ax[1].set_xlabel("Conductivity (S/m)", fontsize=14) ax[1].set_ylabel("Depth (m)", fontsize=14) ax[1].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5) plt.legend(["$\sigma_{true}$", "$\sigma_{pred}$"])
beta_schedule, save_iteration, target_misfit, update_jacobi, ] ######################################################### # Running the DC Inversion # ------------------------ # # To define the inversion object, we need to define the inversion problem and # the set of directives. We can then run the inversion. # # Here we combine the inverse problem and the set of directives dc_inversion = inversion.BaseInversion(dc_inverse_problem, directiveList=directives_list) # Run inversion recovered_conductivity_model = dc_inversion.run(starting_conductivity_model) ############################################################### # Recreate True Conductivity Model # -------------------------------- # background_value = 1e-2 conductor_value = 1e-1 resistor_value = 1e-3 true_conductivity_model = background_value * np.ones(nC) ind_conductor = model_builder.getIndicesSphere(
def resolve_1Dinversions( mesh, dobs, src_height, freqs, m0, mref, mapping, relative=0.08, floor=1e-14, rxOffset=7.86, ): """ Perform a single 1D inversion for a RESOLVE sounding for Horizontal Coplanar Coil data (both real and imaginary). :param discretize.CylMesh mesh: mesh used for the forward simulation :param numpy.ndarray dobs: observed data :param float src_height: height of the source above the ground :param numpy.ndarray freqs: frequencies :param numpy.ndarray m0: starting model :param numpy.ndarray mref: reference model :param maps.IdentityMap mapping: mapping that maps the model to electrical conductivity :param float relative: percent error used to construct the data misfit term :param float floor: noise floor used to construct the data misfit term :param float rxOffset: offset between source and receiver. """ # ------------------- Forward Simulation ------------------- # # set up the receivers bzr = FDEM.Rx.PointMagneticFluxDensitySecondary(np.array( [[rxOffset, 0.0, src_height]]), orientation="z", component="real") bzi = FDEM.Rx.PointMagneticFluxDensity(np.array( [[rxOffset, 0.0, src_height]]), orientation="z", component="imag") # source location srcLoc = np.array([0.0, 0.0, src_height]) srcList = [ FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z") for freq in freqs ] # construct a forward simulation survey = FDEM.Survey(srcList) prb = FDEM.Simulation3DMagneticFluxDensity(mesh, sigmaMap=mapping, Solver=PardisoSolver) prb.survey = survey # ------------------- Inversion ------------------- # # data misfit term uncert = abs(dobs) * relative + floor dat = data.Data(dobs=dobs, standard_deviation=uncert) dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=dat) # regularization regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh) reg.mref = mref # optimization opt = optimization.InexactGaussNewton(maxIter=10) # statement of the inverse problem invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Inversion directives and parameters target = directives.TargetMisfit() inv = inversion.BaseInversion(invProb, directiveList=[target]) invProb.beta = 2.0 # Fix beta in the nonlinear iterations reg.alpha_s = 1e-3 reg.alpha_x = 1.0 prb.counter = opt.counter = utils.Counter() opt.LSshorten = 0.5 opt.remember("xc") # run the inversion mopt = inv.run(m0) return mopt, invProb.dpred, survey.dobs
alphas = directives.AlphasSmoothEstimate_ByEig(alpha0_ratio=alpha0_ratio, n_pw_iter=10, verbose=True) beta = directives.BetaEstimate_ByEig(beta0_ratio=1e-5, n_pw_iter=10) betaIt = directives.PGI_BetaAlphaSchedule( verbose=True, coolingFactor=2.0, progress=0.2, ) targets = directives.MultiTargetMisfits(verbose=True) petrodir = directives.PGI_UpdateParameters(update_gmm=False) # Setup Inversion inv = inversion.BaseInversion( invProb, directiveList=[ alphas, scales, beta, petrodir, targets, betaIt, scaling_schedule ], ) mcluster_map = inv.run(minit) # Inversion with no nonlinear mapping reg_simple_no_map = utils.make_SimplePGI_regularization( mesh=mesh, gmmref=clfnomapping, gmm=clfnomapping, approx_gradient=True, alpha_x=1.0, wiresmap=wires, cell_weights_list=[wr1, wr2], )
def setUp(self): cs = 25.0 hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)] hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)] hz = [(cs, 0, -1.3), (cs, 20), (cs, 0, 1.3)] mesh = discretize.TensorMesh([hx, hy, hz], x0="CCC") blkind0 = utils.model_builder.getIndicesSphere( np.r_[-100.0, -100.0, -200.0], 75.0, mesh.gridCC) blkind1 = utils.model_builder.getIndicesSphere( np.r_[100.0, 100.0, -200.0], 75.0, mesh.gridCC) sigma = np.ones(mesh.nC) * 1e-2 airind = mesh.gridCC[:, 2] > 0.0 sigma[airind] = 1e-8 eta = np.zeros(mesh.nC) tau = np.ones_like(sigma) * 1.0 c = np.ones_like(sigma) * 0.5 eta[blkind0] = 0.1 eta[blkind1] = 0.1 tau[blkind0] = 0.1 tau[blkind1] = 0.01 actmapeta = maps.InjectActiveCells(mesh, ~airind, 0.0) actmaptau = maps.InjectActiveCells(mesh, ~airind, 1.0) actmapc = maps.InjectActiveCells(mesh, ~airind, 1.0) x = mesh.vectorCCx[(mesh.vectorCCx > -155.0) & (mesh.vectorCCx < 155.0)] y = mesh.vectorCCy[(mesh.vectorCCy > -155.0) & (mesh.vectorCCy < 155.0)] Aloc = np.r_[-200.0, 0.0, 0.0] Bloc = np.r_[200.0, 0.0, 0.0] M = utils.ndgrid(x - 25.0, y, np.r_[0.0]) N = utils.ndgrid(x + 25.0, y, np.r_[0.0]) times = np.arange(10) * 1e-3 + 1e-3 rx = sip.receivers.Dipole(M, N, times) src = sip.sources.Dipole([rx], Aloc, Bloc) survey = sip.Survey([src]) wires = maps.Wires(("eta", actmapeta.nP), ("taui", actmaptau.nP), ("c", actmapc.nP)) problem = sip.Simulation3DNodal( mesh, survey=survey, sigma=sigma, etaMap=actmapeta * wires.eta, tauiMap=actmaptau * wires.taui, cMap=actmapc * wires.c, actinds=~airind, storeJ=False, verbose=False, ) problem.solver = Solver mSynth = np.r_[eta[~airind], 1.0 / tau[~airind], c[~airind]] dobs = problem.make_synthetic_data(mSynth, add_noise=True) # Now set up the problem to do some minimization dmis = data_misfit.L2DataMisfit(data=dobs, simulation=problem) reg_eta = regularization.Sparse(mesh, mapping=wires.eta, indActive=~airind) reg_taui = regularization.Sparse(mesh, mapping=wires.taui, indActive=~airind) reg_c = regularization.Sparse(mesh, mapping=wires.c, indActive=~airind) reg = reg_eta + reg_taui + reg_c opt = optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis self.dobs = dobs
def run_inversion( m0, survey, actind, mesh, wires, std, eps, maxIter=15, beta0_ratio=1e0, coolingFactor=2, coolingRate=2, maxIterLS=20, maxIterCG=10, LSshorten=0.5, eta_lower=1e-5, eta_upper=1, tau_lower=1e-6, tau_upper=10.0, c_lower=1e-2, c_upper=1.0, is_log_tau=True, is_log_c=True, is_log_eta=True, mref=None, alpha_s=1e-4, alpha_x=1e0, alpha_y=1e0, alpha_z=1e0, ): """ Run Spectral Spectral IP inversion """ dmisfit = data_misfit.L2DataMisfit(survey) uncert = abs(survey.dobs) * std + eps dmisfit.W = 1.0 / uncert # Map for a regularization # Related to inversion # Set Upper and Lower bounds e = np.ones(actind.sum()) if np.isscalar(eta_lower): eta_lower = e * eta_lower if np.isscalar(tau_lower): tau_lower = e * tau_lower if np.isscalar(c_lower): c_lower = e * c_lower if np.isscalar(eta_upper): eta_upper = e * eta_upper if np.isscalar(tau_upper): tau_upper = e * tau_upper if np.isscalar(c_upper): c_upper = e * c_upper if is_log_eta: eta_upper = np.log(eta_upper) eta_lower = np.log(eta_lower) if is_log_tau: tau_upper = np.log(tau_upper) tau_lower = np.log(tau_lower) if is_log_c: c_upper = np.log(c_upper) c_lower = np.log(c_lower) m_upper = np.r_[eta_upper, tau_upper, c_upper] m_lower = np.r_[eta_lower, tau_lower, c_lower] # Set up regularization reg_eta = regularization.Simple(mesh, mapping=wires.eta, indActive=actind) reg_tau = regularization.Simple(mesh, mapping=wires.tau, indActive=actind) reg_c = regularization.Simple(mesh, mapping=wires.c, indActive=actind) # Todo: reg_eta.alpha_s = alpha_s reg_tau.alpha_s = 0.0 reg_c.alpha_s = 0.0 reg_eta.alpha_x = alpha_x reg_tau.alpha_x = alpha_x reg_c.alpha_x = alpha_x reg_eta.alpha_y = alpha_y reg_tau.alpha_y = alpha_y reg_c.alpha_y = alpha_y reg_eta.alpha_z = alpha_z reg_tau.alpha_z = alpha_z reg_c.alpha_z = alpha_z reg = reg_eta + reg_tau + reg_c # Use Projected Gauss Newton scheme opt = optimization.ProjectedGNCG( maxIter=maxIter, upper=m_upper, lower=m_lower, maxIterLS=maxIterLS, maxIterCG=maxIterCG, LSshorten=LSshorten, ) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) beta = directives.BetaSchedule(coolingFactor=coolingFactor, coolingRate=coolingRate) betaest = directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio) target = directives.TargetMisfit() directiveList = [beta, betaest, target] inv = inversion.BaseInversion(invProb, directiveList=directiveList) opt.LSshorten = 0.5 opt.remember("xc") # Run inversion mopt = inv.run(m0) return mopt, invProb.dpred
def run(plotIt=True, survey_type="dipole-dipole", p=0.0, qx=2.0, qz=2.0): np.random.seed(1) # Initiate I/O class for DC IO = DC.IO() # Obtain ABMN locations xmin, xmax = 0.0, 200.0 ymin, ymax = 0.0, 0.0 zmin, zmax = 0, 0 endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]]) # Generate DC survey object survey = gen_DCIPsurvey(endl, survey_type=survey_type, dim=2, a=10, b=10, n=10) survey = IO.from_abmn_locations_to_survey( survey.locations_a, survey.locations_b, survey.locations_m, survey.locations_n, survey_type, data_dc_type="volt", ) # Obtain 2D TensorMesh mesh, actind = IO.set_mesh() topo, mesh1D = genTopography(mesh, -10, 0, its=100) actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo]) survey.drape_electrodes_on_topography(mesh, actind, option="top") # Build a conductivity model blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5, mesh.gridCC) blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0], 12.5, mesh.gridCC) layer_inds = mesh.gridCC[:, 1] > -5.0 sigma = np.ones(mesh.nC) * 1.0 / 100.0 sigma[blk_inds_c] = 1.0 / 10.0 sigma[blk_inds_r] = 1.0 / 1000.0 sigma[~actind] = 1.0 / 1e8 rho = 1.0 / sigma # Show the true conductivity model if plotIt: fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage( temp, grid=True, ax=ax, gridOpts={"alpha": 0.2}, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "k.") ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect("equal") plt.show() # Use Exponential Map: m = log(rho) actmap = maps.InjectActiveCells(mesh, indActive=actind, valInactive=np.log(1e8)) mapping = maps.ExpMap(mesh) * actmap # Generate mtrue mtrue = np.log(rho[actind]) # Generate 2.5D DC problem # "N" means potential is defined at nodes prb = DC.Simulation2DNodal(mesh, survey=survey, rhoMap=mapping, storeJ=True, Solver=Solver, verbose=True) # Make synthetic DC data with 5% Gaussian noise data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True) IO.data_dc = data.dobs # Show apparent resisitivty pseudo-section if plotIt: IO.plotPseudoSection(data=data.dobs / IO.G, data_type="apparent_resistivity") # Show apparent resisitivty histogram if plotIt: fig = plt.figure() out = hist(data.dobs / IO.G, bins=20) plt.xlabel("Apparent Resisitivty ($\Omega$m)") plt.show() # Set initial model based upon histogram m0 = np.ones(actmap.nP) * np.log(100.0) # Set standard_deviation # floor eps = 10**(-3.2) # percentage relative = 0.05 dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data) uncert = abs(data.dobs) * relative + eps dmisfit.standard_deviation = uncert # Map for a regularization regmap = maps.IdentityMap(nP=int(actind.sum())) # Related to inversion reg = regularization.Sparse(mesh, indActive=actind, mapping=regmap, gradientType="components") # gradientType = 'components' reg.norms = np.c_[p, qx, qz, 0.0] IRLS = directives.Update_IRLS(max_irls_iterations=20, minGNiter=1, beta_search=False, fix_Jmatrix=True) opt = optimization.InexactGaussNewton(maxIter=40) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0) target = directives.TargetMisfit() update_Jacobi = directives.UpdatePreconditioner() inv = inversion.BaseInversion(invProb, directiveList=[betaest, IRLS]) prb.counter = opt.counter = utils.Counter() opt.LSshorten = 0.5 opt.remember("xc") # Run inversion mopt = inv.run(m0) rho_est = mapping * mopt rho_est_l2 = mapping * invProb.l2model rho_est[~actind] = np.nan rho_est_l2[~actind] = np.nan rho_true = rho.copy() rho_true[~actind] = np.nan # show recovered conductivity if plotIt: vmin, vmax = rho.min(), rho.max() fig, ax = plt.subplots(3, 1, figsize=(20, 9)) out1 = mesh.plotImage( rho_true, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[0], ) out2 = mesh.plotImage( rho_est_l2, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[1], ) out3 = mesh.plotImage( rho_est, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[2], ) out = [out1, out2, out3] titles = ["True", "L2", ("L%d, Lx%d, Lz%d") % (p, qx, qz)] for i in range(3): ax[i].plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "kv") ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[i][0], ax=ax[i]) cb.set_label("Resistivity ($\Omega$m)") ax[i].set_xlabel("Northing (m)") ax[i].set_ylabel("Elevation (m)") ax[i].set_aspect("equal") ax[i].set_title(titles[i]) plt.tight_layout() plt.show()
betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e1) # Add sensitivity weights sensitivity_weights = directives.UpdateSensitivityWeights() # Here is where the norms are applied # Use a threshold parameter empirically based on the distribution of # model parameters IRLS = directives.Update_IRLS(f_min_change=1e-3, max_irls_iterations=2, beta_tol=5e-1) # Pre-conditioner update_Jacobi = directives.UpdatePreconditioner() inv = inversion.BaseInversion( invProb, directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest]) # Run the inversion mrec_MVIC = inv.run(m0) ############################################################### # Sparse Vector Inversion # ----------------------- # # Re-run the MVI in the spherical domain so we can impose # sparsity in the vectors. # # spherical_map = maps.SphericalSystem() m_start = utils.mat_utils.cartesian2spherical(
def setup_and_run_std_inv(mesh, dc_survey, dc_data, std_dc, conductivity_map, ind_active, starting_conductivity_model): """Code to setup and run a standard inversion. Parameters ---------- mesh : TYPE DESCRIPTION. dc_survey : TYPE DESCRIPTION. dc_data : TYPE DESCRIPTION. std_dc : TYPE DESCRIPTION. conductivity_map : TYPE DESCRIPTION. ind_active : TYPE DESCRIPTION. starting_conductivity_model : TYPE DESCRIPTION. Returns ------- save_iteration : TYPE DESCRIPTION. save_dict_iteration : TYPE DESCRIPTION. """ # Add standard deviations to data object dc_data.standard_deviation = std_dc # Define the simulation (physics of the problem) dc_simulation = dc.simulation_2d.Simulation2DNodal( mesh, survey=dc_survey, sigmaMap=conductivity_map, Solver=Solver) # Define the data misfit. dc_data_misfit = data_misfit.L2DataMisfit(data=dc_data, simulation=dc_simulation) # Define the regularization (model objective function) dc_regularization = regularization.Simple(mesh, indActive=ind_active, mref=starting_conductivity_model, alpha_s=0.01, alpha_x=1, alpha_y=1) # Define how the optimization problem is solved. Here we will use a # projected. Gauss-Newton approach that employs the conjugate gradient # solver. dc_optimization = optimization.ProjectedGNCG(maxIter=15, lower=-np.inf, upper=np.inf, maxIterLS=20, maxIterCG=10, tolCG=1e-3) # Here we define the inverse problem that is to be solved dc_inverse_problem = inverse_problem.BaseInvProblem( dc_data_misfit, dc_regularization, dc_optimization) # Define inversion directives # Apply and update sensitivity weighting as the model updates update_sensitivity_weighting = directives.UpdateSensitivityWeights() # Defining a starting value for the trade-off parameter (beta) between the # data misfit and the regularization. starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e2) # Set the rate of reduction in trade-off parameter (beta) each time the # the inverse problem is solved. And set the number of Gauss-Newton # iterations for each trade-off paramter value. beta_schedule = directives.BetaSchedule(coolingFactor=10, coolingRate=1) # Options for outputting recovered models and predicted data for each beta. save_iteration = directives.SaveOutputEveryIteration(save_txt=False) # save results from each iteration in a dict save_dict_iteration = directives.SaveOutputDictEveryIteration( saveOnDisk=False) directives_list = [ update_sensitivity_weighting, starting_beta, beta_schedule, save_iteration, save_dict_iteration, ] # Here we combine the inverse problem and the set of directives dc_inversion = inversion.BaseInversion(dc_inverse_problem, directiveList=directives_list) # Run inversion _ = dc_inversion.run(starting_conductivity_model) return save_iteration, save_dict_iteration
def run(plotIt=True): nC = 40 de = 1.0 h = np.ones(nC) * de / nC M = discretize.TensorMesh([h, h]) y = np.linspace(M.vectorCCy[0], M.vectorCCx[-1], int(np.floor(nC / 4))) rlocs = np.c_[0 * y + M.vectorCCx[-1], y] rx = tomo.Rx(rlocs) source_list = [ tomo.Src(location=np.r_[M.vectorCCx[0], yi], receiver_list=[rx]) for yi in y ] # phi model phi0 = 0 phi1 = 0.65 phitrue = utils.model_builder.defineBlock(M.gridCC, [0.4, 0.6], [0.6, 0.4], [phi1, phi0]) knownVolume = np.sum(phitrue * M.vol) print("True Volume: {}".format(knownVolume)) # Set up true conductivity model and plot the model transform sigma0 = np.exp(1) sigma1 = 1e4 if plotIt: fig, ax = plt.subplots(1, 1) sigmaMapTest = maps.SelfConsistentEffectiveMedium(nP=1000, sigma0=sigma0, sigma1=sigma1, rel_tol=1e-1, maxIter=150) testphis = np.linspace(0.0, 1.0, 1000) sigetest = sigmaMapTest * testphis ax.semilogy(testphis, sigetest) ax.set_title("Model Transform") ax.set_xlabel("$\\varphi$") ax.set_ylabel("$\sigma$") sigmaMap = maps.SelfConsistentEffectiveMedium(M, sigma0=sigma0, sigma1=sigma1) # scale the slowness so it is on a ~linear scale slownessMap = maps.LogMap(M) * sigmaMap # set up the true sig model and log model dobs sigtrue = sigmaMap * phitrue # modt = Model.BaseModel(M); slownesstrue = slownessMap * phitrue # true model (m = log(sigma)) # set up the problem and survey survey = tomo.Survey(source_list) problem = tomo.Simulation(M, survey=survey, slownessMap=slownessMap) if plotIt: fig, ax = plt.subplots(1, 1) cb = plt.colorbar(M.plotImage(phitrue, ax=ax)[0], ax=ax) survey.plot(ax=ax) cb.set_label("$\\varphi$") # get observed data data = problem.make_synthetic_data(phitrue, relative_error=0.03, add_noise=True) dpred = problem.dpred(np.zeros(M.nC)) # objective function pieces reg = regularization.Tikhonov(M) dmis = data_misfit.L2DataMisfit(simulation=problem, data=data) dmisVol = Volume(mesh=M, knownVolume=knownVolume) beta = 0.25 maxIter = 15 # without the volume regularization opt = optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0) opt.remember("xc") invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=beta) inv = inversion.BaseInversion(invProb) mopt1 = inv.run(np.zeros(M.nC) + 1e-16) print("\nTotal recovered volume (no vol misfit term in inversion): " "{}".format(dmisVol(mopt1))) # with the volume regularization vol_multiplier = 9e4 reg2 = reg dmis2 = dmis + vol_multiplier * dmisVol opt2 = optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0) opt2.remember("xc") invProb2 = inverse_problem.BaseInvProblem(dmis2, reg2, opt2, beta=beta) inv2 = inversion.BaseInversion(invProb2) mopt2 = inv2.run(np.zeros(M.nC) + 1e-16) print("\nTotal volume (vol misfit term in inversion): {}".format( dmisVol(mopt2))) # plot results if plotIt: fig, ax = plt.subplots(1, 1) ax.plot(data.dobs) ax.plot(dpred) ax.plot(problem.dpred(mopt1), "o") ax.plot(problem.dpred(mopt2), "s") ax.legend(["dobs", "dpred0", "dpred w/o Vol", "dpred with Vol"]) fig, ax = plt.subplots(1, 3, figsize=(16, 4)) im0 = M.plotImage(phitrue, ax=ax[0])[0] im1 = M.plotImage(mopt1, ax=ax[1])[0] im2 = M.plotImage(mopt2, ax=ax[2])[0] for im in [im0, im1, im2]: im.set_clim([0.0, phi1]) plt.colorbar(im0, ax=ax[0]) plt.colorbar(im1, ax=ax[1]) plt.colorbar(im2, ax=ax[2]) ax[0].set_title("true, vol: {:1.3e}".format(knownVolume)) ax[1].set_title("recovered(no Volume term), vol: {:1.3e} ".format( dmisVol(mopt1))) ax[2].set_title("recovered(with Volume term), vol: {:1.3e} ".format( dmisVol(mopt2))) plt.tight_layout()
def setUp(self): np.random.seed(0) # First we need to define the direction of the inducing field # As a simple case, we pick a vertical inducing field of magnitude # 50,000nT. # From old convention, field orientation is given as an # azimuth from North (positive clockwise) # and dip from the horizontal (positive downward). H0 = (50000.0, 90.0, 0.0) # Create a mesh h = [5, 5, 5] padDist = np.ones((3, 2)) * 100 nCpad = [2, 4, 2] # Create grid of points for topography # Lets create a simple Gaussian topo and set the active cells [xx, yy] = np.meshgrid(np.linspace(-200.0, 200.0, 50), np.linspace(-200.0, 200.0, 50)) b = 100 A = 50 zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0)) # We would usually load a topofile topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)] # Create and array of observation points xr = np.linspace(-100.0, 100.0, 20) yr = np.linspace(-100.0, 100.0, 20) X, Y = np.meshgrid(xr, yr) Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 5 # Create a MAGsurvey xyzLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)] rxLoc = mag.Point(xyzLoc) srcField = mag.SourceField([rxLoc], parameters=H0) survey = mag.Survey(srcField) # self.mesh.finalize() self.mesh = meshutils.mesh_builder_xyz( xyzLoc, h, padding_distance=padDist, mesh_type="TREE", ) self.mesh = meshutils.refine_tree_xyz( self.mesh, topo, method="surface", octree_levels=nCpad, octree_levels_padding=nCpad, finalize=True, ) # Define an active cells from topo actv = utils.surface2ind_topo(self.mesh, topo) nC = int(actv.sum()) # We can now create a susceptibility model and generate data # Lets start with a simple block in half-space self.model = utils.model_builder.addBlock( self.mesh.gridCC, np.zeros(self.mesh.nC), np.r_[-20, -20, -15], np.r_[20, 20, 20], 0.05, )[actv] # Create active map to go from reduce set to full self.actvMap = maps.InjectActiveCells(self.mesh, actv, np.nan) # Creat reduced identity map idenMap = maps.IdentityMap(nP=nC) # Create the forward model operator sim = mag.Simulation3DIntegral( self.mesh, survey=survey, chiMap=idenMap, actInd=actv, store_sensitivities="ram", ) self.sim = sim data = sim.make_synthetic_data(self.model, relative_error=0.0, noise_floor=1.0, add_noise=True) # Create a regularization reg = regularization.Sparse(self.mesh, indActive=actv, mapping=idenMap) reg.norms = np.c_[0, 0, 0, 0] reg.mref = np.zeros(nC) # Data misfit function dmis = data_misfit.L2DataMisfit(simulation=sim, data=data) # Add directives to the inversion opt = optimization.ProjectedGNCG( maxIter=10, lower=0.0, upper=10.0, maxIterLS=5, maxIterCG=5, tolCG=1e-4, stepOffBoundsFact=1e-4, ) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e6) # Here is where the norms are applied # Use pick a treshold parameter empirically based on the distribution of # model parameters IRLS = directives.Update_IRLS(f_min_change=1e-3, max_irls_iterations=20, beta_tol=1e-1, beta_search=False) update_Jacobi = directives.UpdatePreconditioner() sensitivity_weights = directives.UpdateSensitivityWeights() self.inv = inversion.BaseInversion( invProb, directiveList=[IRLS, sensitivity_weights, update_Jacobi])
def setUp(self): cs = 25.0 hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)] hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)] hz = [(cs, 0, -1.3), (cs, 20)] mesh = discretize.TensorMesh([hx, hy, hz], x0="CCN") blkind0 = utils.model_builder.getIndicesSphere( np.r_[-100.0, -100.0, -200.0], 75.0, mesh.gridCC) blkind1 = utils.model_builder.getIndicesSphere( np.r_[100.0, 100.0, -200.0], 75.0, mesh.gridCC) sigma = np.ones(mesh.nC) * 1e-2 eta = np.zeros(mesh.nC) tau = np.ones_like(sigma) * 1.0 eta[blkind0] = 0.1 eta[blkind1] = 0.1 tau[blkind0] = 0.1 tau[blkind1] = 0.01 x = mesh.vectorCCx[(mesh.vectorCCx > -155.0) & (mesh.vectorCCx < 155.0)] y = mesh.vectorCCy[(mesh.vectorCCy > -155.0) & (mesh.vectorCCy < 155.0)] Aloc = np.r_[-200.0, 0.0, 0.0] Bloc = np.r_[200.0, 0.0, 0.0] M = utils.ndgrid(x - 25.0, y, np.r_[0.0]) N = utils.ndgrid(x + 25.0, y, np.r_[0.0]) times = np.arange(10) * 1e-3 + 1e-3 rx = sip.receivers.Dipole(M, N, times) print(rx.nD) print(rx.locations) src = sip.sources.Dipole([rx], Aloc, Bloc) survey = sip.Survey([src]) print(f"Survey ND = {survey.nD}") print(f"Survey ND = {src.nD}") wires = maps.Wires(("eta", mesh.nC), ("taui", mesh.nC)) problem = sip.Simulation3DCellCentered( mesh, survey=survey, rho=1.0 / sigma, etaMap=wires.eta, tauiMap=wires.taui, storeJ=False, ) problem.solver = Solver mSynth = np.r_[eta, 1.0 / tau] problem.model = mSynth dobs = problem.make_synthetic_data(mSynth, add_noise=True) # Now set up the problem to do some minimization dmis = data_misfit.L2DataMisfit(data=dobs, simulation=problem) reg = regularization.Tikhonov(mesh) opt = optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis self.dobs = dobs
def run( plotIt=True, survey_type="dipole-dipole", rho_background=1e3, rho_block=1e2, block_x0=100, block_dx=10, block_y0=-10, block_dy=5, ): np.random.seed(1) # Initiate I/O class for DC IO = DC.IO() # Obtain ABMN locations xmin, xmax = 0.0, 200.0 ymin, ymax = 0.0, 0.0 zmin, zmax = 0, 0 endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]]) # Generate DC survey object survey = DCutils.gen_DCIPsurvey(endl, survey_type=survey_type, dim=2, a=10, b=10, n=10) survey = IO.from_ambn_locations_to_survey( survey.locations_a, survey.locations_b, survey.locations_m, survey.locations_n, survey_type, data_dc_type="volt", ) # Obtain 2D TensorMesh mesh, actind = IO.set_mesh() # Flat topography actind = utils.surface2ind_topo( mesh, np.c_[mesh.vectorCCx, mesh.vectorCCx * 0.0]) survey.drape_electrodes_on_topography(mesh, actind, option="top") # Use Exponential Map: m = log(rho) actmap = maps.InjectActiveCells(mesh, indActive=actind, valInactive=np.log(1e8)) parametric_block = maps.ParametricBlock(mesh, slopeFact=1e2) mapping = maps.ExpMap(mesh) * parametric_block # Set true model # val_background,val_block, block_x0, block_dx, block_y0, block_dy mtrue = np.r_[np.log(1e3), np.log(10), 100, 10, -20, 10] # Set initial model m0 = np.r_[np.log(rho_background), np.log(rho_block), block_x0, block_dx, block_y0, block_dy, ] rho = mapping * mtrue rho0 = mapping * m0 # Show the true conductivity model fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage( temp, grid=False, ax=ax, gridOpts={"alpha": 0.2}, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "k.") ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect("equal") ax.set_title("True resistivity model") plt.show() # Show the true conductivity model fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho0.copy() temp[~actind] = np.nan out = mesh.plotImage( temp, grid=False, ax=ax, gridOpts={"alpha": 0.2}, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "k.") ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect("equal") ax.set_title("Initial resistivity model") plt.show() # Generate 2.5D DC problem # "N" means potential is defined at nodes prb = DC.Simulation2DNodal(mesh, survey=survey, rhoMap=mapping, storeJ=True, solver=Solver) # Make synthetic DC data with 5% Gaussian noise data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True) # Show apparent resisitivty pseudo-section IO.plotPseudoSection(data=data.dobs / IO.G, data_type="apparent_resistivity") # Show apparent resisitivty histogram fig = plt.figure() out = hist(data.dobs / IO.G, bins=20) plt.show() # Set standard_deviation # floor eps = 10**(-3.2) # percentage relative = 0.05 dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data) uncert = abs(data.dobs) * relative + eps dmisfit.standard_deviation = uncert # Map for a regularization mesh_1d = discretize.TensorMesh([parametric_block.nP]) # Related to inversion reg = regularization.Simple(mesh_1d, alpha_x=0.0) opt = optimization.InexactGaussNewton(maxIter=10) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0) target = directives.TargetMisfit() updateSensW = directives.UpdateSensitivityWeights() update_Jacobi = directives.UpdatePreconditioner() invProb.beta = 0.0 inv = inversion.BaseInversion(invProb, directiveList=[target]) prb.counter = opt.counter = utils.Counter() opt.LSshorten = 0.5 opt.remember("xc") # Run inversion mopt = inv.run(m0) # Convert obtained inversion model to resistivity # rho = M(m), where M(.) is a mapping rho_est = mapping * mopt rho_true = rho.copy() # show recovered conductivity vmin, vmax = rho.min(), rho.max() fig, ax = plt.subplots(2, 1, figsize=(20, 6)) out1 = mesh.plotImage( rho_true, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[0], ) out2 = mesh.plotImage( rho_est, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[1], ) out = [out1, out2] for i in range(2): ax[i].plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "kv") ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[i][0], ax=ax[i]) cb.set_label("Resistivity ($\Omega$m)") ax[i].set_xlabel("Northing (m)") ax[i].set_ylabel("Elevation (m)") ax[i].set_aspect("equal") ax[0].set_title("True resistivity model") ax[1].set_title("Recovered resistivity model") plt.tight_layout() plt.show()
def run(plotIt=True, saveFig=False): # Set up cylindrically symmeric mesh cs, ncx, ncz, npad = 10.0, 15, 25, 13 # padded cyl mesh hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = discretize.CylMesh([hx, 1, hz], "00C") # Conductivity model layerz = np.r_[-200.0, -100.0] layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1]) active = mesh.vectorCCz < 0.0 sig_half = 1e-2 # Half-space conductivity sig_air = 1e-8 # Air conductivity sig_layer = 5e-2 # Layer conductivity sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer # Mapping actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap mtrue = np.log(sigma[active]) # ----- FDEM problem & survey ----- # rxlocs = utils.ndgrid([np.r_[50.0], np.r_[0], np.r_[0.0]]) bzr = FDEM.Rx.PointMagneticFluxDensitySecondary(rxlocs, "z", "real") bzi = FDEM.Rx.PointMagneticFluxDensitySecondary(rxlocs, "z", "imag") freqs = np.logspace(2, 3, 5) srcLoc = np.array([0.0, 0.0, 0.0]) print( "min skin depth = ", 500.0 / np.sqrt(freqs.max() * sig_half), "max skin depth = ", 500.0 / np.sqrt(freqs.min() * sig_half), ) print( "max x ", mesh.vectorCCx.max(), "min z ", mesh.vectorCCz.min(), "max z ", mesh.vectorCCz.max(), ) source_list = [ FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z") for freq in freqs ] surveyFD = FDEM.Survey(source_list) prbFD = FDEM.Simulation3DMagneticFluxDensity( mesh, survey=surveyFD, sigmaMap=mapping, solver=Solver ) rel_err = 0.03 dataFD = prbFD.make_synthetic_data(mtrue, relative_error=rel_err, add_noise=True) dataFD.noise_floor = np.linalg.norm(dataFD.dclean) * 1e-5 # FDEM inversion np.random.seed(1) dmisfit = data_misfit.L2DataMisfit(simulation=prbFD, data=dataFD) regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh) opt = optimization.InexactGaussNewton(maxIterCG=10) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Inversion Directives beta = directives.BetaSchedule(coolingFactor=4, coolingRate=3) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1.0, seed=518936) target = directives.TargetMisfit() directiveList = [beta, betaest, target] inv = inversion.BaseInversion(invProb, directiveList=directiveList) m0 = np.log(np.ones(mtrue.size) * sig_half) reg.alpha_s = 5e-1 reg.alpha_x = 1.0 prbFD.counter = opt.counter = utils.Counter() opt.remember("xc") moptFD = inv.run(m0) # TDEM problem times = np.logspace(-4, np.log10(2e-3), 10) print( "min diffusion distance ", 1.28 * np.sqrt(times.min() / (sig_half * mu_0)), "max diffusion distance ", 1.28 * np.sqrt(times.max() / (sig_half * mu_0)), ) rx = TDEM.Rx.PointMagneticFluxDensity(rxlocs, times, "z") src = TDEM.Src.MagDipole( [rx], waveform=TDEM.Src.StepOffWaveform(), location=srcLoc, # same src location as FDEM problem ) surveyTD = TDEM.Survey([src]) prbTD = TDEM.Simulation3DMagneticFluxDensity( mesh, survey=surveyTD, sigmaMap=mapping, solver=Solver ) prbTD.time_steps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)] rel_err = 0.03 dataTD = prbTD.make_synthetic_data(mtrue, relative_error=rel_err, add_noise=True) dataTD.noise_floor = np.linalg.norm(dataTD.dclean) * 1e-5 # TDEM inversion dmisfit = data_misfit.L2DataMisfit(simulation=prbTD, data=dataTD) regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh) opt = optimization.InexactGaussNewton(maxIterCG=10) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # directives beta = directives.BetaSchedule(coolingFactor=4, coolingRate=3) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1.0, seed=518936) target = directives.TargetMisfit() directiveList = [beta, betaest, target] inv = inversion.BaseInversion(invProb, directiveList=directiveList) m0 = np.log(np.ones(mtrue.size) * sig_half) reg.alpha_s = 5e-1 reg.alpha_x = 1.0 prbTD.counter = opt.counter = utils.Counter() opt.remember("xc") moptTD = inv.run(m0) # Plot the results if plotIt: plt.figure(figsize=(10, 8)) ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2) ax1 = plt.subplot2grid((2, 2), (0, 1)) ax2 = plt.subplot2grid((2, 2), (1, 1)) fs = 13 # fontsize matplotlib.rcParams["font.size"] = fs # Plot the model # z_true = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0) # z_true = np.r_[mesh.vectorCCz[active][0], z_true, mesh.vectorCCz[active][-1]] activeN = mesh.vectorNz <= 0.0 + cs / 2.0 z_true = np.repeat(mesh.vectorNz[activeN][1:-1], 2, axis=0) z_true = np.r_[mesh.vectorNz[activeN][0], z_true, mesh.vectorNz[activeN][-1]] sigma_true = np.repeat(sigma[active], 2, axis=0) ax0.semilogx(sigma_true, z_true, "k-", lw=2, label="True") ax0.semilogx( np.exp(moptFD), mesh.vectorCCz[active], "bo", ms=6, markeredgecolor="k", markeredgewidth=0.5, label="FDEM", ) ax0.semilogx( np.exp(moptTD), mesh.vectorCCz[active], "r*", ms=10, markeredgecolor="k", markeredgewidth=0.5, label="TDEM", ) ax0.set_ylim(-700, 0) ax0.set_xlim(5e-3, 1e-1) ax0.set_xlabel("Conductivity (S/m)", fontsize=fs) ax0.set_ylabel("Depth (m)", fontsize=fs) ax0.grid(which="both", color="k", alpha=0.5, linestyle="-", linewidth=0.2) ax0.legend(fontsize=fs, loc=4) # plot the data misfits - negative b/c we choose positive to be in the # direction of primary ax1.plot(freqs, -dataFD.dobs[::2], "k-", lw=2, label="Obs (real)") ax1.plot(freqs, -dataFD.dobs[1::2], "k--", lw=2, label="Obs (imag)") dpredFD = prbFD.dpred(moptTD) ax1.loglog( freqs, -dpredFD[::2], "bo", ms=6, markeredgecolor="k", markeredgewidth=0.5, label="Pred (real)", ) ax1.loglog( freqs, -dpredFD[1::2], "b+", ms=10, markeredgewidth=2.0, label="Pred (imag)" ) ax2.loglog(times, dataTD.dobs, "k-", lw=2, label="Obs") ax2.loglog( times, prbTD.dpred(moptTD), "r*", ms=10, markeredgecolor="k", markeredgewidth=0.5, label="Pred", ) ax2.set_xlim(times.min() - 1e-5, times.max() + 1e-4) # Labels, gridlines, etc ax2.grid(which="both", alpha=0.5, linestyle="-", linewidth=0.2) ax1.grid(which="both", alpha=0.5, linestyle="-", linewidth=0.2) ax1.set_xlabel("Frequency (Hz)", fontsize=fs) ax1.set_ylabel("Vertical magnetic field (-T)", fontsize=fs) ax2.set_xlabel("Time (s)", fontsize=fs) ax2.set_ylabel("Vertical magnetic field (T)", fontsize=fs) ax2.legend(fontsize=fs, loc=3) ax1.legend(fontsize=fs, loc=3) ax1.set_xlim(freqs.max() + 1e2, freqs.min() - 1e1) ax0.set_title("(a) Recovered Models", fontsize=fs) ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs) ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs) plt.tight_layout(pad=1.5) if saveFig is True: plt.savefig("example1.png", dpi=600)
# # We estimate the trade-off parameter, beta, between the data # misfit and regularization by the largest eigenvalue of the data misfit and # the regularization. Here, we use a fixed beta, but could alternatively # employ a beta-cooling schedule using :class:`SimPEG.directives.BetaSchedule` dmisfit = data_misfit.L2DataMisfit(simulation=prob, data=data) reg = regularization.Simple(inversion_mesh) opt = optimization.InexactGaussNewton(maxIterCG=10, remember="xc") invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) betaest = directives.BetaEstimate_ByEig(beta0_ratio=0.05, n_pw_iter=1, seed=1) target = directives.TargetMisfit() directiveList = [betaest, target] inv = inversion.BaseInversion(invProb, directiveList=directiveList) print("The target misfit is {:1.2f}".format(target.target)) ############################################################################### # Run the inversion # ------------------ # # We start from a half-space equal to the deep conductivity. m0 = np.log(sigma_deep) * np.ones(inversion_mesh.nC) t = time.time() mrec = inv.run(m0) print("\n Inversion Complete. Elapsed Time = {:1.2f} s".format(time.time() - t))
def run(plotIt=True, survey_type="dipole-dipole"): np.random.seed(1) # Initiate I/O class for DC IO = DC.IO() # Obtain ABMN locations xmin, xmax = 0.0, 200.0 ymin, ymax = 0.0, 0.0 zmin, zmax = 0, 0 endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]]) # Generate DC survey object survey = gen_DCIPsurvey(endl, survey_type=survey_type, dim=2, a=10, b=10, n=10) survey = IO.from_ambn_locations_to_survey( survey.locations_a, survey.locations_b, survey.locations_m, survey.locations_n, survey_type, data_dc_type="volt", ) # Obtain 2D TensorMesh mesh, actind = IO.set_mesh() topo, mesh1D = genTopography(mesh, -10, 0, its=100) actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo]) survey.drape_electrodes_on_topography(mesh, actind, option="top") # Build a conductivity model blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5, mesh.gridCC) blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0], 12.5, mesh.gridCC) layer_inds = mesh.gridCC[:, 1] > -5.0 sigma = np.ones(mesh.nC) * 1.0 / 100.0 sigma[blk_inds_c] = 1.0 / 10.0 sigma[blk_inds_r] = 1.0 / 1000.0 sigma[~actind] = 1.0 / 1e8 rho = 1.0 / sigma # Show the true conductivity model if plotIt: fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage( temp, grid=True, ax=ax, gridOpts={"alpha": 0.2}, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "k.") ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Resistivity (ohm-m)") ax.set_aspect("equal") plt.show() # Use Exponential Map: m = log(rho) actmap = maps.InjectActiveCells(mesh, indActive=actind, valInactive=np.log(1e8)) mapping = maps.ExpMap(mesh) * actmap # Generate mtrue mtrue = np.log(rho[actind]) # Generate 2.5D DC problem # "N" means potential is defined at nodes prb = DC.Simulation2DNodal(mesh, survey=survey, rhoMap=mapping, storeJ=True, Solver=Solver, verbose=True) geometric_factor = survey.set_geometric_factor( data_type="apparent_resistivity", survey_type="dipole-dipole", space_type="half-space", ) # Make synthetic DC data with 5% Gaussian noise data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True) IO.data_dc = data.dobs # Show apparent resisitivty pseudo-section if plotIt: IO.plotPseudoSection(data=data.dobs, data_type="apparent_resistivity") # Show apparent resisitivty histogram if plotIt: fig = plt.figure() out = hist(data.dobs, bins=20) plt.xlabel("Apparent Resisitivty ($\Omega$m)") plt.show() # Set initial model based upon histogram m0 = np.ones(actmap.nP) * np.log(100.0) # Set standard_deviation # floor (10 ohm-m) eps = 1.0 # percentage relative = 0.05 dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data) uncert = abs(data.dobs) * relative + eps dmisfit.standard_deviation = uncert # Map for a regularization regmap = maps.IdentityMap(nP=int(actind.sum())) # Related to inversion reg = regularization.Sparse(mesh, indActive=actind, mapping=regmap) opt = optimization.InexactGaussNewton(maxIter=15) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0) target = directives.TargetMisfit() updateSensW = directives.UpdateSensitivityWeights() update_Jacobi = directives.UpdatePreconditioner() inv = inversion.BaseInversion( invProb, directiveList=[beta, target, updateSensW, betaest, update_Jacobi]) prb.counter = opt.counter = utils.Counter() opt.LSshorten = 0.5 opt.remember("xc") # Run inversion mopt = inv.run(m0) # Get diag(JtJ) mask_inds = np.ones(mesh.nC, dtype=bool) jtj = np.sqrt(updateSensW.JtJdiag[0]) jtj /= jtj.max() temp = np.ones_like(jtj, dtype=bool) temp[jtj > 0.005] = False mask_inds[actind] = temp actind_final = np.logical_and(actind, ~mask_inds) jtj_cc = np.ones(mesh.nC) * np.nan jtj_cc[actind] = jtj # Show the sensitivity if plotIt: fig = plt.figure(figsize=(12, 3)) ax = plt.subplot(111) temp = rho.copy() temp[~actind] = np.nan out = mesh.plotImage( jtj_cc, grid=True, ax=ax, gridOpts={"alpha": 0.2}, clim=(0.005, 0.5), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ) ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "k.") ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[0]) cb.set_label("Sensitivity") ax.set_aspect("equal") plt.show() # Convert obtained inversion model to resistivity # rho = M(m), where M(.) is a mapping rho_est = mapping * mopt rho_est[~actind_final] = np.nan rho_true = rho.copy() rho_true[~actind_final] = np.nan # show recovered conductivity if plotIt: vmin, vmax = rho.min(), rho.max() fig, ax = plt.subplots(2, 1, figsize=(20, 6)) out1 = mesh.plotImage( rho_true, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[0], ) out2 = mesh.plotImage( rho_est, clim=(10, 1000), pcolorOpts={ "cmap": "viridis", "norm": colors.LogNorm() }, ax=ax[1], ) out = [out1, out2] for i in range(2): ax[i].plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1], "kv") ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max()) ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min()) cb = plt.colorbar(out[i][0], ax=ax[i]) cb.set_label("Resistivity ($\Omega$m)") ax[i].set_xlabel("Northing (m)") ax[i].set_ylabel("Elevation (m)") ax[i].set_aspect("equal") plt.tight_layout() plt.show()
def run(plotIt=True): cs, ncx, ncz, npad = 5.0, 25, 24, 15 hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] mesh = discretize.CylMesh([hx, 1, hz], "00C") active = mesh.vectorCCz < 0.0 layer = (mesh.vectorCCz < -50.0) & (mesh.vectorCCz >= -150.0) actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap sig_half = 1e-3 sig_air = 1e-8 sig_layer = 1e-2 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half sigma[layer] = sig_layer mtrue = np.log(sigma[active]) x = np.r_[30, 50, 70, 90] rxloc = np.c_[x, x * 0.0, np.zeros_like(x)] prb = TDEM.Simulation3DMagneticFluxDensity(mesh, sigmaMap=mapping, solver=Solver) prb.time_steps = [ (1e-3, 5), (1e-4, 5), (5e-5, 10), (5e-5, 5), (1e-4, 10), (5e-4, 10), ] # Use VTEM waveform out = EMutils.VTEMFun(prb.times, 0.00595, 0.006, 100) # Forming function handle for waveform using 1D linear interpolation wavefun = interp1d(prb.times, out) t0 = 0.006 waveform = TDEM.Src.RawWaveform(offTime=t0, waveFct=wavefun) rx = TDEM.Rx.PointMagneticFluxTimeDerivative( rxloc, np.logspace(-4, -2.5, 11) + t0, "z") src = TDEM.Src.CircularLoop([rx], waveform=waveform, loc=np.array([0.0, 0.0, 0.0]), radius=10.0) survey = TDEM.Survey([src]) prb.survey = survey # create observed data data = prb.make_synthetic_data(mtrue, relative_error=0.02, noise_floor=1e-11) dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data) regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh) opt = optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5) invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) target = directives.TargetMisfit() # Create an inversion object beta = directives.BetaSchedule(coolingFactor=1.0, coolingRate=2.0) betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0) invProb.beta = 1e2 inv = inversion.BaseInversion(invProb, directiveList=[beta, target]) m0 = np.log(np.ones(mtrue.size) * sig_half) prb.counter = opt.counter = utils.Counter() opt.remember("xc") mopt = inv.run(m0) if plotIt: fig, ax = plt.subplots(1, 2, figsize=(10, 6)) Dobs = data.dobs.reshape((len(rx.times), len(x))) Dpred = invProb.dpred.reshape((len(rx.times), len(x))) for i in range(len(x)): ax[0].loglog(rx.times - t0, -Dobs[:, i].flatten(), "k") ax[0].loglog(rx.times - t0, -Dpred[:, i].flatten(), "k.") if i == 0: ax[0].legend(("$d^{obs}$", "$d^{pred}$"), fontsize=16) ax[0].set_xlabel("Time (s)", fontsize=14) ax[0].set_ylabel("$db_z / dt$ (nT/s)", fontsize=16) ax[0].set_xlabel("Time (s)", fontsize=14) ax[0].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5) plt.semilogx(sigma[active], mesh.vectorCCz[active]) plt.semilogx(np.exp(mopt), mesh.vectorCCz[active]) ax[1].set_ylim(-600, 0) ax[1].set_xlim(1e-4, 1e-1) ax[1].set_xlabel("Conductivity (S/m)", fontsize=14) ax[1].set_ylabel("Depth (m)", fontsize=14) ax[1].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5) plt.legend(["$\sigma_{true}$", "$\sigma_{pred}$"])
update_sensitivity_weighting, update_IRLS, starting_beta, save_iteration, ] ##################################################################### # Running the DC Inversion # ------------------------ # # To define the inversion object, we need to define the inversion problem and # the set of directives. We can then run the inversion. # # Here we combine the inverse problem and the set of directives dc_inversion = inversion.BaseInversion(inv_prob, directiveList=directives_list) # Run inversion recovered_conductivity_model = dc_inversion.run(starting_conductivity_model) ############################################################ # Plotting True and Recovered Conductivity Model # ---------------------------------------------- # # Load true conductivity model true_conductivity_model = np.loadtxt(str(true_conductivity_filename)) true_conductivity_model_log10 = np.log10(true_conductivity_model[ind_active]) # Get L2 and sparse recovered model in base 10 l2_conductivity_model_log10 = np.log10(np.exp(inv_prob.l2model))
# Here is where the norms are applied # Use a threshold parameter empirically based on the distribution of # model parameters update_IRLS = directives.Update_IRLS( f_min_change=1e-4, max_irls_iterations=0, coolEpsFact=1.5, beta_tol=1e-2, ) saveDict = directives.SaveOutputEveryIteration(save_txt=False) update_Jacobi = directives.UpdatePreconditioner() sensitivity_weights = directives.UpdateSensitivityWeights(everyIter=False) inv = inversion.BaseInversion( invProb, directiveList=[ update_IRLS, sensitivity_weights, betaest, update_Jacobi, saveDict ], ) # Run the inversion mrec = inv.run(m0) # Plot the result ax = plt.subplot(1, 2, 1) mesh.plotSlice(inject_global * model, normal="Y", ax=ax, grid=True) ax.set_title("True") ax.set_aspect("equal") ax = plt.subplot(1, 2, 2) mesh.plotSlice(inject_global * mrec, normal="Y", ax=ax, grid=True) ax.set_title("Recovered")
starting_beta, beta_schedule, save_iteration, update_jacobi, ] ##################################################################### # Running the Inversion # --------------------- # # To define the inversion object, we need to define the inversion problem and # the set of directives. We can then run the inversion. # # Here we combine the inverse problem and the set of directives inv = inversion.BaseInversion(inv_prob, directives_list) # Run inversion recovered_model = inv.run(starting_model) ############################################################ # Recreate True Model # ------------------- # # Define density contrast values for each unit in g/cc background_density = 0.0 block_density = -0.2 sphere_density = 0.2 # Define model. Models in SimPEG are vector arrays.
def run(plotIt=True, saveFig=False, cleanup=True): """ Run 1D inversions for a single sounding of the RESOLVE and SkyTEM bookpurnong data :param bool plotIt: show the plots? :param bool saveFig: save the figure :param bool cleanup: remove the downloaded results """ downloads, directory = download_and_unzip_data() resolve = h5py.File(os.path.sep.join([directory, "booky_resolve.hdf5"]), "r") skytem = h5py.File(os.path.sep.join([directory, "booky_skytem.hdf5"]), "r") river_path = resolve["river_path"].value # Choose a sounding location to invert xloc, yloc = 462100.0, 6196500.0 rxind_skytem = np.argmin( abs(skytem["xy"][:, 0] - xloc) + abs(skytem["xy"][:, 1] - yloc)) rxind_resolve = np.argmin( abs(resolve["xy"][:, 0] - xloc) + abs(resolve["xy"][:, 1] - yloc)) # Plot both resolve and skytem data on 2D plane fig = plt.figure(figsize=(13, 6)) title = ["RESOLVE In-phase 400 Hz", "SkyTEM High moment 156 $\mu$s"] ax1 = plt.subplot(121) ax2 = plt.subplot(122) axs = [ax1, ax2] out_re = utils.plot2Ddata( resolve["xy"], resolve["data"][:, 0], ncontour=100, contourOpts={"cmap": "viridis"}, ax=ax1, ) vmin, vmax = out_re[0].get_clim() cb_re = plt.colorbar(out_re[0], ticks=np.linspace(vmin, vmax, 3), ax=ax1, fraction=0.046, pad=0.04) temp_skytem = skytem["data"][:, 5].copy() temp_skytem[skytem["data"][:, 5] > 7e-10] = 7e-10 out_sky = utils.plot2Ddata( skytem["xy"][:, :2], temp_skytem, ncontour=100, contourOpts={ "cmap": "viridis", "vmax": 7e-10 }, ax=ax2, ) vmin, vmax = out_sky[0].get_clim() cb_sky = plt.colorbar( out_sky[0], ticks=np.linspace(vmin, vmax * 0.99, 3), ax=ax2, format="%.1e", fraction=0.046, pad=0.04, ) cb_re.set_label("Bz (ppm)") cb_sky.set_label("dB$_z$ / dt (V/A-m$^4$)") for i, ax in enumerate(axs): xticks = [460000, 463000] yticks = [6195000, 6198000, 6201000] ax.set_xticks(xticks) ax.set_yticks(yticks) ax.plot(xloc, yloc, "wo") ax.plot(river_path[:, 0], river_path[:, 1], "k", lw=0.5) ax.set_aspect("equal") if i == 1: ax.plot(skytem["xy"][:, 0], skytem["xy"][:, 1], "k.", alpha=0.02, ms=1) ax.set_yticklabels([str(" ") for f in yticks]) else: ax.plot(resolve["xy"][:, 0], resolve["xy"][:, 1], "k.", alpha=0.02, ms=1) ax.set_yticklabels([str(f) for f in yticks]) ax.set_ylabel("Northing (m)") ax.set_xlabel("Easting (m)") ax.set_title(title[i]) ax.axis("equal") # plt.tight_layout() if saveFig is True: fig.savefig("resolve_skytem_data.png", dpi=600) # ------------------ Mesh ------------------ # # Step1: Set 2D cylindrical mesh cs, ncx, ncz, npad = 1.0, 10.0, 10.0, 20 hx = [(cs, ncx), (cs, npad, 1.3)] npad = 12 temp = np.logspace(np.log10(1.0), np.log10(12.0), 19) temp_pad = temp[-1] * 1.3**np.arange(npad) hz = np.r_[temp_pad[::-1], temp[::-1], temp, temp_pad] mesh = discretize.CylMesh([hx, 1, hz], "00C") active = mesh.vectorCCz < 0.0 # Step2: Set a SurjectVertical1D mapping # Note: this sets our inversion model as 1D log conductivity # below subsurface active = mesh.vectorCCz < 0.0 actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz) mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap sig_half = 1e-1 sig_air = 1e-8 sigma = np.ones(mesh.nCz) * sig_air sigma[active] = sig_half # Initial and reference model m0 = np.log(sigma[active]) # ------------------ RESOLVE Forward Simulation ------------------ # # Step3: Invert Resolve data # Bird height from the surface b_height_resolve = resolve["src_elevation"].value src_height_resolve = b_height_resolve[rxind_resolve] # Set Rx (In-phase and Quadrature) rxOffset = 7.86 bzr = FDEM.Rx.PointMagneticFluxDensitySecondary( np.array([[rxOffset, 0.0, src_height_resolve]]), orientation="z", component="real", ) bzi = FDEM.Rx.PointMagneticFluxDensity( np.array([[rxOffset, 0.0, src_height_resolve]]), orientation="z", component="imag", ) # Set Source (In-phase and Quadrature) frequency_cp = resolve["frequency_cp"].value freqs = frequency_cp.copy() srcLoc = np.array([0.0, 0.0, src_height_resolve]) srcList = [ FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z") for freq in freqs ] # Set FDEM survey (In-phase and Quadrature) survey = FDEM.Survey(srcList) prb = FDEM.Simulation3DMagneticFluxDensity(mesh, sigmaMap=mapping, Solver=Solver) prb.survey = survey # ------------------ RESOLVE Inversion ------------------ # # Primary field bp = -mu_0 / (4 * np.pi * rxOffset**3) # Observed data cpi_inds = [0, 2, 6, 8, 10] cpq_inds = [1, 3, 7, 9, 11] dobs_re = (np.c_[resolve["data"][rxind_resolve, :][cpi_inds], resolve["data"][rxind_resolve, :][cpq_inds], ].flatten() * bp * 1e-6) # Uncertainty relative = np.repeat(np.r_[np.ones(3) * 0.1, np.ones(2) * 0.15], 2) floor = 20 * abs(bp) * 1e-6 std = abs(dobs_re) * relative + floor # Data Misfit data_resolve = data.Data(dobs=dobs_re, survey=survey, standard_deviation=std) dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data_resolve) # Regularization regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh, mapping=maps.IdentityMap(regMesh)) # Optimization opt = optimization.InexactGaussNewton(maxIter=5) # statement of the inverse problem invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Inversion directives and parameters target = directives.TargetMisfit() # stop when we hit target misfit invProb.beta = 2.0 inv = inversion.BaseInversion(invProb, directiveList=[target]) reg.alpha_s = 1e-3 reg.alpha_x = 1.0 reg.mref = m0.copy() opt.LSshorten = 0.5 opt.remember("xc") # run the inversion mopt_re = inv.run(m0) dpred_re = invProb.dpred # ------------------ SkyTEM Forward Simulation ------------------ # # Step4: Invert SkyTEM data # Bird height from the surface b_height_skytem = skytem["src_elevation"].value src_height = b_height_skytem[rxind_skytem] srcLoc = np.array([0.0, 0.0, src_height]) # Radius of the source loop area = skytem["area"].value radius = np.sqrt(area / np.pi) rxLoc = np.array([[radius, 0.0, src_height]]) # Parameters for current waveform t0 = skytem["t0"].value times = skytem["times"].value waveform_skytem = skytem["waveform"].value offTime = t0 times_off = times - t0 # Note: we are Using theoretical VTEM waveform, # but effectively fits SkyTEM waveform peakTime = 1.0000000e-02 a = 3.0 dbdt_z = TDEM.Rx.PointMagneticFluxTimeDerivative( locations=rxLoc, times=times_off[:-3] + offTime, orientation="z") # vertical db_dt rxList = [dbdt_z] # list of receivers srcList = [ TDEM.Src.CircularLoop( rxList, loc=srcLoc, radius=radius, orientation="z", waveform=TDEM.Src.VTEMWaveform(offTime=offTime, peakTime=peakTime, a=3.0), ) ] # solve the problem at these times timeSteps = [ (peakTime / 5, 5), ((offTime - peakTime) / 5, 5), (1e-5, 5), (5e-5, 5), (1e-4, 10), (5e-4, 15), ] prob = TDEM.Simulation3DElectricField(mesh, time_steps=timeSteps, sigmaMap=mapping, Solver=Solver) survey = TDEM.Survey(srcList) prob.survey = survey src = srcList[0] rx = src.receiver_list[0] wave = [] for time in prob.times: wave.append(src.waveform.eval(time)) wave = np.hstack(wave) out = prob.dpred(m0) # plot the waveform fig = plt.figure(figsize=(5, 3)) times_off = times - t0 plt.plot(waveform_skytem[:, 0], waveform_skytem[:, 1], "k.") plt.plot(prob.times, wave, "k-", lw=2) plt.legend(("SkyTEM waveform", "Waveform (fit)"), fontsize=10) for t in rx.times: plt.plot(np.ones(2) * t, np.r_[-0.03, 0.03], "k-") plt.ylim(-0.1, 1.1) plt.grid(True) plt.xlabel("Time (s)") plt.ylabel("Normalized current") if saveFig: fig.savefig("skytem_waveform", dpi=200) # Observed data dobs_sky = skytem["data"][rxind_skytem, :-3] * area # ------------------ SkyTEM Inversion ------------------ # # Uncertainty relative = 0.12 floor = 7.5e-12 std = abs(dobs_sky) * relative + floor # Data Misfit data_sky = data.Data(dobs=-dobs_sky, survey=survey, standard_deviation=std) dmisfit = data_misfit.L2DataMisfit(simulation=prob, data=data_sky) # Regularization regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]]) reg = regularization.Simple(regMesh, mapping=maps.IdentityMap(regMesh)) # Optimization opt = optimization.InexactGaussNewton(maxIter=5) # statement of the inverse problem invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt) # Directives and Inversion Parameters target = directives.TargetMisfit() invProb.beta = 20.0 inv = inversion.BaseInversion(invProb, directiveList=[target]) reg.alpha_s = 1e-1 reg.alpha_x = 1.0 opt.LSshorten = 0.5 opt.remember("xc") reg.mref = mopt_re # Use RESOLVE model as a reference model # run the inversion mopt_sky = inv.run(m0) dpred_sky = invProb.dpred # Plot the figure from the paper plt.figure(figsize=(12, 8)) fs = 13 # fontsize matplotlib.rcParams["font.size"] = fs ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2) ax1 = plt.subplot2grid((2, 2), (0, 1)) ax2 = plt.subplot2grid((2, 2), (1, 1)) # Recovered Models sigma_re = np.repeat(np.exp(mopt_re), 2, axis=0) sigma_sky = np.repeat(np.exp(mopt_sky), 2, axis=0) z = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0) z = np.r_[mesh.vectorCCz[active][0], z, mesh.vectorCCz[active][-1]] ax0.semilogx(sigma_re, z, "k", lw=2, label="RESOLVE") ax0.semilogx(sigma_sky, z, "b", lw=2, label="SkyTEM") ax0.set_ylim(-50, 0) # ax0.set_xlim(5e-4, 1e2) ax0.grid(True) ax0.set_ylabel("Depth (m)") ax0.set_xlabel("Conducivity (S/m)") ax0.legend(loc=3) ax0.set_title("(a) Recovered Models") # RESOLVE Data ax1.loglog(frequency_cp, dobs_re.reshape((5, 2))[:, 0] / bp * 1e6, "k-", label="Obs (real)") ax1.loglog( frequency_cp, dobs_re.reshape((5, 2))[:, 1] / bp * 1e6, "k--", label="Obs (imag)", ) ax1.loglog( frequency_cp, dpred_re.reshape((5, 2))[:, 0] / bp * 1e6, "k+", ms=10, markeredgewidth=2.0, label="Pred (real)", ) ax1.loglog( frequency_cp, dpred_re.reshape((5, 2))[:, 1] / bp * 1e6, "ko", ms=6, markeredgecolor="k", markeredgewidth=0.5, label="Pred (imag)", ) ax1.set_title("(b) RESOLVE") ax1.set_xlabel("Frequency (Hz)") ax1.set_ylabel("Bz (ppm)") ax1.grid(True) ax1.legend(loc=3, fontsize=11) # SkyTEM data ax2.loglog(times_off[3:] * 1e6, dobs_sky / area, "b-", label="Obs") ax2.loglog( times_off[3:] * 1e6, -dpred_sky / area, "bo", ms=4, markeredgecolor="k", markeredgewidth=0.5, label="Pred", ) ax2.set_xlim(times_off.min() * 1e6 * 1.2, times_off.max() * 1e6 * 1.1) ax2.set_xlabel("Time ($\mu s$)") ax2.set_ylabel("dBz / dt (V/A-m$^4$)") ax2.set_title("(c) SkyTEM High-moment") ax2.grid(True) ax2.legend(loc=3) a3 = plt.axes([0.86, 0.33, 0.1, 0.09], facecolor=[0.8, 0.8, 0.8, 0.6]) a3.plot(prob.times * 1e6, wave, "k-") a3.plot(rx.times * 1e6, np.zeros_like(rx.times), "k|", markeredgewidth=1, markersize=12) a3.set_xlim([prob.times.min() * 1e6 * 0.75, prob.times.max() * 1e6 * 1.1]) a3.set_title("(d) Waveform", fontsize=11) a3.set_xticks([prob.times.min() * 1e6, t0 * 1e6, prob.times.max() * 1e6]) a3.set_yticks([]) # a3.set_xticklabels(['0', '2e4']) a3.set_xticklabels(["-1e4", "0", "1e4"]) plt.tight_layout() if saveFig: plt.savefig("booky1D_time_freq.png", dpi=600) if plotIt: plt.show() resolve.close() skytem.close() if cleanup: print(os.path.split(directory)[:-1]) os.remove( os.path.sep.join(directory.split()[:-1] + ["._bookpurnong_inversion"])) os.remove(downloads) shutil.rmtree(directory)
lower=lowerbound, upper=upperbound, maxIterLS=20, maxIterCG=100, tolCG=1e-4, ) # create inverse problem invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) inv = inversion.BaseInversion( invProb, # directives: evaluate alphas (and data misfits scales) before beta directiveList=[ Alphas, scaling_init, beta, update_smallness, targets, scale_schedule, betaIt, MrefInSmooth, update_Jacobi, ], ) # Invert pgi_model_no_info = inv.run(m0) # Plot the result with full petrophysical information density_model_no_info = gravmap * pgi_model_no_info magsus_model_no_info = magmap * pgi_model_no_info learned_gmm = reg.objfcts[0].gmm quasi_geology_model_no_info = actvMap * reg.objfcts[0].membership(
def test_basic_inversion(self): """ Test to see if inversion recovers model """ h = [(2, 30)] meshObj = discretize.TensorMesh((h, h, [(2, 10)]), x0="CCN") mod = 0.00025 * np.ones(meshObj.nC) mod[(meshObj.gridCC[:, 0] > -4.0) & (meshObj.gridCC[:, 1] > -4.0) & (meshObj.gridCC[:, 0] < 4.0) & (meshObj.gridCC[:, 1] < 4.0)] = 0.001 times = np.logspace(-4, -2, 5) waveObj = vrm.waveforms.SquarePulse(delt=0.02) x, y = np.meshgrid(np.linspace(-17, 17, 16), np.linspace(-17, 17, 16)) x, y, z = mkvc(x), mkvc(y), 0.5 * np.ones(np.size(x)) receiver_list = [ vrm.Rx.Point(np.c_[x, y, z], times=times, fieldType="dbdt", orientation="z") ] txNodes = np.array([ [-20, -20, 0.001], [20, -20, 0.001], [20, 20, 0.001], [-20, 20, 0.01], [-20, -20, 0.001], ]) txList = [vrm.Src.LineCurrent(receiver_list, txNodes, 1.0, waveObj)] Survey = vrm.Survey(txList) Survey.t_active = np.zeros(Survey.nD, dtype=bool) Survey.set_active_interval(-1e6, 1e6) Problem = vrm.Simulation3DLinear(meshObj, survey=Survey, refinement_factor=2) dobs = Problem.make_synthetic_data(mod) Survey.noise_floor = 1e-11 dmis = data_misfit.L2DataMisfit(data=dobs, simulation=Problem) W = mkvc((np.sum(np.array(Problem.A)**2, axis=0)))**0.25 reg = regularization.Simple(meshObj, alpha_s=0.01, alpha_x=1.0, alpha_y=1.0, alpha_z=1.0, cell_weights=W) opt = optimization.ProjectedGNCG(maxIter=20, lower=0.0, upper=1e-2, maxIterLS=20, tolCG=1e-4) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) directives = [ BetaSchedule(coolingFactor=2, coolingRate=1), TargetMisfit() ] inv = inversion.BaseInversion(invProb, directiveList=directives) m0 = 1e-6 * np.ones(len(mod)) mrec = inv.run(m0) dmis_final = np.sum( (dmis.W.diagonal() * (mkvc(dobs) - Problem.fields(mrec)))**2) mod_err_2 = np.sqrt(np.sum((mrec - mod)**2)) / np.size(mod) mod_err_inf = np.max(np.abs(mrec - mod)) self.assertTrue(dmis_final < Survey.nD and mod_err_2 < 5e-6 and mod_err_inf < np.max(mod))