Exemple #1
0
def createSystem():
    protomsdir = "%s/Work/ProtoMS" % os.getenv("HOME")

    protoms = ProtoMS("%s/protoms2" % protomsdir)

    protoms.addParameterFile("%s/parameter/amber99.ff" % protomsdir)
    protoms.addParameterFile("%s/parameter/solvents.ff" % protomsdir)
    protoms.addParameterFile("%s/parameter/gaff.ff" % protomsdir)
    protoms.addParameterFile(solute_params)

    solute = PDB().readMolecule(solute_file)
    solute = solute.edit().rename(solute_name).commit()
    solute = protoms.parameterise(solute, ProtoMS.SOLUTE)

    perturbation = solute.property("perturbations")

    lam = Symbol("lambda")
    lam_fwd = Symbol("lambda_{fwd}")
    lam_bwd = Symbol("lambda_{bwd}")

    initial = Perturbation.symbols().initial()
    final = Perturbation.symbols().final()

    solute = solute.edit().setProperty(
        "perturbations",
        perturbation.recreate((1 - lam) * initial + lam * final)).commit()

    solute_fwd = solute.edit().renumber().setProperty(
        "perturbations", perturbation.substitute(lam, lam_fwd)).commit()
    solute_bwd = solute.edit().renumber().setProperty(
        "perturbations", perturbation.substitute(lam, lam_bwd)).commit()

    solvent = PDB().read(solvent_file)

    tip4p = solvent.moleculeAt(0).molecule()
    tip4p = tip4p.edit().rename(solvent_name).commit()
    tip4p = protoms.parameterise(tip4p, ProtoMS.SOLVENT)

    tip4p_chgs = tip4p.property("charge")
    tip4p_ljs = tip4p.property("LJ")

    for i in range(0, solvent.nMolecules()):
        tip4p = solvent.moleculeAt(i).molecule()
        tip4p = tip4p.edit().rename(solvent_name) \
                            .setProperty("charge", tip4p_chgs) \
                            .setProperty("LJ", tip4p_ljs) \
                            .commit()

        solvent.update(tip4p)

    system = System()

    solutes = MoleculeGroup("solutes")
    solutes.add(solute)
    solutes.add(solute_fwd)
    solutes.add(solute_bwd)

    solvent = MoleculeGroup("solvent", solvent)

    all = MoleculeGroup("all")
    all.add(solutes)
    all.add(solvent)

    system.add(solutes)
    system.add(solvent)
    system.add(all)

    solventff = InterCLJFF("solvent:solvent")
    solventff.add(solvent)

    solute_intraff = InternalFF("solute_intraff")
    solute_intraff.add(solute)

    solute_fwd_intraff = InternalFF("solute_fwd_intraff")
    solute_fwd_intraff.add(solute_fwd)

    solute_bwd_intraff = InternalFF("solute_bwd_intraff")
    solute_bwd_intraff.add(solute_bwd)

    solute_intraclj = IntraCLJFF("solute_intraclj")
    solute_intraclj.add(solute)

    solute_fwd_intraclj = IntraCLJFF("solute_fwd_intraclj")
    solute_fwd_intraclj.add(solute_fwd)

    solute_bwd_intraclj = IntraCLJFF("solute_bwd_intraclj")
    solute_bwd_intraclj.add(solute_bwd)

    solute_solventff = InterGroupCLJFF("solute:solvent")
    solute_solventff.add(solute, MGIdx(0))
    solute_solventff.add(solvent, MGIdx(1))

    solute_fwd_solventff = InterGroupCLJFF("solute_fwd:solvent")
    solute_fwd_solventff.add(solute_fwd, MGIdx(0))
    solute_fwd_solventff.add(solvent, MGIdx(1))

    solute_bwd_solventff = InterGroupCLJFF("solute_bwd:solvent")
    solute_bwd_solventff.add(solute_bwd, MGIdx(0))
    solute_bwd_solventff.add(solvent, MGIdx(1))

    forcefields = [
        solventff, solute_intraff, solute_intraclj, solute_solventff,
        solute_fwd_intraff, solute_fwd_intraclj, solute_fwd_solventff,
        solute_bwd_intraff, solute_bwd_intraclj, solute_bwd_solventff
    ]

    for forcefield in forcefields:
        system.add(forcefield)

    xsc_line = open(solvent_file, "r").readlines()[0]
    words = xsc_line.split()

    #HEADER box  -12.5  -12.5  -12.5   12.5   12.5   12.5
    space = PeriodicBox(
        Vector(float(words[2]), float(words[3]), float(words[4])),
        Vector(float(words[5]), float(words[6]), float(words[7])))

    system.setProperty("space", space)
    system.setProperty(
        "switchingFunction",
        HarmonicSwitchingFunction(coulomb_cutoff, coulomb_feather, lj_cutoff,
                                  lj_feather))
    system.setProperty("combiningRules", VariantProperty(combining_rules))

    e_total = system.totalComponent()
    e_fwd = Symbol("E_{fwd}")
    e_bwd = Symbol("E_{bwd}")

    total_nrg = solventff.components().total() + \
                solute_intraclj.components().total() + solute_intraff.components().total() + \
                solute_solventff.components().total()

    fwd_nrg = solventff.components().total() + \
              solute_fwd_intraclj.components().total() + solute_fwd_intraff.components().total() + \
              solute_fwd_solventff.components().total()

    bwd_nrg = solventff.components().total() + \
              solute_bwd_intraclj.components().total() + solute_bwd_intraff.components().total() + \
              solute_bwd_solventff.components().total()

    system.setComponent(e_total, total_nrg)
    system.setComponent(e_fwd, fwd_nrg)
    system.setComponent(e_bwd, bwd_nrg)

    system.setConstant(lam, 0.0)
    system.setConstant(lam_fwd, 0.0)
    system.setConstant(lam_bwd, 0.0)

    system.add(SpaceWrapper(Vector(0, 0, 0), all))

    system.add(PerturbationConstraint(solutes))

    system.add(ComponentConstraint(lam_fwd, Min(lam + delta_lambda, 1)))
    system.add(ComponentConstraint(lam_bwd, Max(lam - delta_lambda, 0)))

    de_fwd = Symbol("de_fwd")
    de_bwd = Symbol("de_bwd")

    system.setComponent(de_fwd, fwd_nrg - total_nrg)
    system.setComponent(de_bwd, total_nrg - bwd_nrg)

    system.add("total_energy", MonitorComponent(e_total, Average()))
    system.add("de_fwd",
               MonitorComponent(de_fwd, FreeEnergyAverage(temperature)))
    system.add("de_bwd",
               MonitorComponent(de_bwd, FreeEnergyAverage(temperature)))

    system.setComponent(lam, 0.0)
    print "LAMBDA=0   : Energy = %f kcal mol-1" % system.energy().to(
        kcal_per_mol)
    print "             (%f, %f)" % (system.energy(e_fwd).to(kcal_per_mol),
                                     system.energy(e_bwd).to(kcal_per_mol))

    system.setComponent(lam, 0.5)
    print "LAMBDA=0.5 : Energy = %f kcal mol-1" % system.energy().to(
        kcal_per_mol)
    print "             (%f, %f)" % (system.energy(e_fwd).to(kcal_per_mol),
                                     system.energy(e_bwd).to(kcal_per_mol))

    system.setComponent(lam, 1.0)
    print "LAMBDA=1.0 : Energy = %f kcal mol-1" % system.energy().to(
        kcal_per_mol)
    print "             (%f, %f)" % (system.energy(e_fwd).to(kcal_per_mol),
                                     system.energy(e_bwd).to(kcal_per_mol))
    return system
Exemple #2
0
def loadQMMMSystem():
    """This function is called to set up the system. It sets everything
       up, then returns a System object that holds the configured system"""

    print("Loading the system...")

    t = QTime()

    if os.path.exists(s3file.val):
        print("Loading existing s3 file %s..." % s3file.val)
        loadsys = Sire.Stream.load(s3file.val)

    else:
        print("Loading from Amber files %s / %s..." %
              (topfile.val, crdfile.val))
        # Add the name of the ligand to the list of solute molecules
        sys_scheme = NamingScheme()
        sys_scheme.addSoluteResidueName(ligand_name.val)

        # Load up the system. This will automatically find the protein, solute, water, solvent
        # and ion molecules and assign them to different groups
        loadsys = createSystem(topfile.val, crdfile.val, sys_scheme)
        ligand_mol = findMolecule(loadsys, ligand_name.val)

        if ligand_mol is None:
            print(
                "Cannot find the ligand (%s) in the set of loaded molecules!" %
                ligand_name.val)
            sys.exit(-1)

        # Center the system with the ligand at (0,0,0)
        loadsys = centerSystem(loadsys, ligand_mol)
        ligand_mol = loadsys[ligand_mol.number()][0].molecule()

        if reflection_radius.val is None:
            loadsys = addFlexibility(loadsys, naming_scheme=sys_scheme)
        else:
            loadsys = addFlexibility(loadsys,
                                     Vector(0),
                                     reflection_radius.val,
                                     naming_scheme=sys_scheme)

        Sire.Stream.save(loadsys, s3file.val)

    ligand_mol = findMolecule(loadsys, ligand_name.val)

    if ligand_mol is None:
        print("Cannot find the ligand (%s) in the set of loaded molecules!" %
              ligand_name.val)
        sys.exit(-1)

    # Now build the QM/MM system
    system = System("QMMM system")

    if loadsys.containsProperty("reflection center"):
        reflect_center = loadsys.property("reflection center").toVector()[0]
        reflect_radius = float(
            str(loadsys.property("reflection sphere radius")))

        system.setProperty("reflection center",
                           AtomCoords(CoordGroup(1, reflect_center)))
        system.setProperty("reflection sphere radius",
                           VariantProperty(reflect_radius))
        space = Cartesian()
    else:
        space = loadsys.property("space")

    if loadsys.containsProperty("average solute translation delta"):
        system.setProperty("average solute translation delta", \
                           loadsys.property("average solute translation delta"))

    if loadsys.containsProperty("average solute rotation delta"):
        system.setProperty("average solute rotation delta", \
                           loadsys.property("average solute rotation delta"))

    # create a molecule group to hold all molecules
    all_group = MoleculeGroup("all")

    # create a molecule group for the ligand
    ligand_group = MoleculeGroup("ligand")
    ligand_group.add(ligand_mol)
    all_group.add(ligand_mol)

    groups = []
    groups.append(ligand_group)

    # pull out the groups that we want from the two systems

    # create a group to hold all of the fixed molecules in the bound leg
    fixed_group = MoleculeGroup("fixed_molecules")
    if MGName("fixed_molecules") in loadsys.mgNames():
        fixed_group.add(loadsys[MGName("fixed_molecules")])

    if save_pdb.val:
        # write a PDB of the fixed atoms in the bound and free legs
        if not os.path.exists(outdir.val):
            os.makedirs(outdir.val)

        PDB().write(fixed_group, "%s/fixed.pdb" % outdir.val)

    # create a group to hold all of the mobile solute molecules
    mobile_solutes_group = MoleculeGroup("mobile_solutes")
    if MGName("mobile_solutes") in loadsys.mgNames():
        mobile_solutes_group.add(loadsys[MGName("mobile_solutes")])
        mobile_solutes_group.remove(ligand_mol)
        if mobile_solutes_group.nMolecules() > 0:
            all_group.add(mobile_solutes_group)

    groups.append(mobile_solutes_group)

    # create a group to hold all of the mobile solvent molecules
    mobile_solvents_group = MoleculeGroup("mobile_solvents")
    if MGName("mobile_solvents") in loadsys.mgNames():
        mols = loadsys[MGName("mobile_solvents")]
        for molnum in mols.molNums():
            solvent_mol = mols[molnum][0].molecule()
            mobile_solvents_group.add(solvent_mol)

        all_group.add(mobile_solvents_group)

        print("The number of mobile solvent molecules is %d." %
              mobile_solvents_group.nMolecules())

    groups.append(mobile_solvents_group)

    # create the groups to hold all of the protein molecules. We will use "extract" to
    # pull out only those protein atoms that are in the mobile region
    protein_intra_group = MoleculeGroup("protein_intra_group")
    mobile_proteins_group = MoleculeGroup("proteins")
    mobile_protein_sidechains_group = MoleculeGroup("mobile_sidechains")
    mobile_protein_backbones_group = MoleculeGroup("mobile_backbones")

    if MGName("protein_sidechains") in loadsys.mgNames() or \
       MGName("protein_backbones") in loadsys.mgNames():

        all_proteins = Molecules()

        try:
            protein_sidechains = loadsys[MGName("protein_sidechains")]
            all_proteins.add(protein_sidechains.molecules())
        except:
            protein_sidechains = MoleculeGroup()

        try:
            protein_backbones = loadsys[MGName("protein_backbones")]
            all_proteins.add(protein_backbones.molecules())
        except:
            protein_backbones = MoleculeGroup()

        try:
            boundary_molecules = loadsys[MGName("boundary_molecules")]
            all_proteins.add(boundary_molecules.molecules())
        except:
            boundary_molecules = MoleculeGroup()

        for molnum in all_proteins.molNums():
            protein_mol = Molecule.join(all_proteins[molnum])

            if protein_mol.selectedAll():
                protein_intra_group.add(protein_mol)
                all_group.add(protein_mol)

                mobile_protein = []

                if protein_sidechains.contains(molnum):
                    sidechains = protein_sidechains[molnum]
                    for sidechain in sidechains:
                        mobile_protein_sidechains_group.add(sidechain)

                    mobile_protein += sidechains

                if protein_backbones.contains(molnum):
                    backbones = protein_backbones[molnum]
                    for backbone in backbones:
                        mobile_protein_backbones_group.add(backbone)

                    mobile_protein += backbones

                if len(mobile_protein) > 0:
                    mobile_proteins_group.add(Molecule.join(mobile_protein))

            else:
                # only some of the atoms have been selected. We will extract
                # the mobile atoms and will then update all of the other selections
                print("Extracting the mobile atoms of protein %s" %
                      protein_mol.molecule())
                new_protein_mol = protein_mol.extract()
                print("Extracted %d mobile atoms from %d total atoms..." % \
                                        (new_protein_mol.nAtoms(), protein_mol.molecule().nAtoms()))

                protein_intra_group.add(new_protein_mol)
                all_group.add(new_protein_mol)

                mobile_protein_view = new_protein_mol.selection()
                mobile_protein_view = mobile_protein_view.selectNone()

                if protein_sidechains.contains(molnum):
                    sidechains = protein_sidechains[molnum]

                    for sidechain in sidechains:
                        view = new_protein_mol.selection()
                        view = view.selectNone()

                        for atomid in sidechain.selection().selectedAtoms():
                            atom = protein_mol.atom(atomid)
                            resatomid = ResAtomID(atom.residue().number(),
                                                  atom.name())
                            view = view.select(resatomid)
                            mobile_protein_view = mobile_protein_view.select(
                                resatomid)

                        if view.nSelected() > 0:
                            mobile_protein_sidechains_group.add(
                                PartialMolecule(new_protein_mol, view))

                if protein_backbones.contains(molnum):
                    backbones = protein_backbones[molnum]

                    for backbone in backbones:
                        view = new_protein_mol.selection()
                        view = view.selectNone()

                        for atomid in backbone.selection().selectedAtoms():
                            atom = protein_mol.atom(atomid)
                            resatomid = ResAtomID(atom.residue().number(),
                                                  atom.name())
                            view = view.select(resatomid)
                            mobile_protein_view = mobile_protein_view.select(
                                resatomid)

                        if view.nSelected() > 0:
                            mobile_protein_backbones_group.add(
                                PartialMolecule(new_protein_mol, view))

                print("Number of moved protein sidechain residues = %s" %
                      mobile_protein_sidechains_group.nViews())
                print("Number of moved protein backbone residues = %s" %
                      mobile_protein_backbones_group.nViews())

                if mobile_protein_view.nSelected() > 0:
                    mobile_proteins_group.add(
                        PartialMolecule(new_protein_mol, mobile_protein_view))

    groups.append(mobile_protein_backbones_group)
    groups.append(mobile_protein_sidechains_group)
    groups.append(all_group)

    # finished added in all of the proteins
    for group in groups:
        if group.nMolecules() > 0:
            print("Adding group %s" % group.name())
            system.add(group)

    # now add in the forcefields for the system...
    print("Creating the forcefields for the QM/MM system...")

    # first, group together the molecules grouped above into convenient
    # groups for the forcefields

    # group holding just the ligand
    ligand_mols = ligand_group.molecules()

    # group holding all of the mobile atoms
    mobile_mols = mobile_solvents_group.molecules()
    mobile_mols.add(mobile_solutes_group.molecules())
    mobile_mols.add(protein_intra_group.molecules())

    # group holding all of the mobile atoms in the bound leg, excluding the
    # buffer atoms that are fixed, but bonded to mobile atoms
    mobile_buffered_mols = mobile_solvents_group.molecules()
    mobile_buffered_mols.add(mobile_solutes_group.molecules())
    mobile_buffered_mols.add(mobile_proteins_group.molecules())

    # group holding all of the protein molecules that need intramolecular terms calculated
    protein_intra_mols = protein_intra_group.molecules()

    # group holding all of the solute molecules that nede intramolecular terms calculated
    solute_intra_mols = mobile_solutes_group.molecules()

    forcefields = []

    ###
    ### INTRA-ENERGY OF THE LIGAND AND CLUSTER
    ###

    # intramolecular energy of the ligand
    ligand_intraclj = IntraCLJFF("ligand:intraclj")
    ligand_intraclj = setCLJProperties(ligand_intraclj, space)
    ligand_intraclj.add(ligand_mols)

    ligand_intraff = InternalFF("ligand:intra")
    ligand_intraff.add(ligand_mols)

    forcefields.append(ligand_intraclj)
    forcefields.append(ligand_intraff)

    ligand_mm_nrg = ligand_intraclj.components().total(
    ) + ligand_intraff.components().total()

    ###
    ### FORCEFIELDS INVOLVING THE LIGAND/CLUSTER AND OTHER ATOMS
    ###

    # forcefield holding the energy between the ligand and the mobile atoms in the
    # bound leg
    ligand_mobile = InterGroupCLJFF("system:ligand-mobile")
    ligand_mobile = setCLJProperties(ligand_mobile, space)

    ligand_mobile.add(ligand_mols, MGIdx(0))
    ligand_mobile.add(mobile_mols, MGIdx(1))

    qm_ligand = QMMMFF("system:ligand-QM")
    qm_ligand.add(ligand_mols, MGIdx(0))
    qm_ligand = setQMProperties(qm_ligand, space)

    zero_energy = 0

    if not intermolecular_only.val:
        if qm_zero_energy.val is None:
            # calculate the delta value for the system - this is the difference between
            # the MM and QM intramolecular energy of the ligand
            t.start()
            print("\nComparing the MM and QM energies of the ligand...")
            mm_intra = ligand_intraclj.energy().value(
            ) + ligand_intraff.energy().value()
            print("MM energy = %s kcal mol-1 (took %s ms)" %
                  (mm_intra, t.elapsed()))

            t.start()
            zero_sys = System()
            zero_sys.add(qm_ligand)
            qm_intra = zero_sys.energy().value()
            print("QM energy = %s kcal mol-1 (took %s ms)" %
                  (qm_intra, t.elapsed()))

            print("\nSetting the QM zero energy to %s kcal mol-1" %
                  (qm_intra - mm_intra))
            qm_ligand.setZeroEnergy((qm_intra - mm_intra) * kcal_per_mol)
            zero_energy = qm_intra - mm_intra
        else:
            print("\nManually setting the QM zero energy to %s" %
                  qm_zero_energy.val)
            qm_ligand.setZeroEnergy(qm_zero_energy.val)
            zero_energy = qm_zero_energy.val

    qm_ligand.add(mobile_mols, MGIdx(1))

    ligand_mm_nrg += ligand_mobile.components().total()
    ligand_qm_nrg = qm_ligand.components().total() + ligand_mobile.components(
    ).lj()

    if intermolecular_only.val:
        # the QM model still uses the MM intramolecular energy of the ligand
        ligand_qm_nrg += ligand_intraclj.components().total(
        ) + ligand_intraff.components().total()

    forcefields.append(ligand_mobile)
    forcefields.append(qm_ligand)

    if fixed_group.nMolecules() > 0:
        # there are fixed molecules

        # Whether or not to disable the grid and calculate all energies atomisticly
        if disable_grid:
            # we need to renumber all of the fixed molecules so that they don't clash
            # with the mobile molecules
            print("Renumbering fixed molecules...")
            fixed_group = renumberMolecules(fixed_group)

        # forcefield holding the energy between the ligand and the fixed atoms in the bound leg
        if disable_grid:
            ligand_fixed = InterGroupCLJFF("system:ligand-fixed")
            ligand_fixed = setCLJProperties(ligand_fixed, space)
            ligand_fixed = setFakeGridProperties(ligand_fixed, space)

            ligand_fixed.add(ligand_mols, MGIdx(0))
            ligand_fixed.add(fixed_group, MGIdx(1))

            qm_ligand.add(fixed_group, MGIdx(1))

            ligand_mm_nrg += ligand_fixed.components().total()
            ligand_qm_nrg += ligand_fixed.components().lj()

            forcefields.append(ligand_fixed)

        else:
            ligand_fixed = GridFF2("system:ligand-fixed")
            ligand_fixed = setCLJProperties(ligand_fixed, space)
            ligand_fixed = setGridProperties(ligand_fixed)

            ligand_fixed.add(ligand_mols, MGIdx(0))
            ligand_fixed.addFixedAtoms(fixed_group)

            qm_ligand.addFixedAtoms(fixed_group)

            ligand_mm_nrg += ligand_fixed.components().total()
            ligand_qm_nrg += ligand_fixed.components().lj()

            forcefields.append(ligand_fixed)

    ###
    ### FORCEFIELDS NOT INVOLVING THE LIGAND
    ###

    # forcefield holding the intermolecular energy between all molecules
    mobile_mobile = InterCLJFF("mobile-mobile")
    mobile_mobile = setCLJProperties(mobile_mobile, space)

    mobile_mobile.add(mobile_mols)

    other_nrg = mobile_mobile.components().total()
    forcefields.append(mobile_mobile)

    # forcefield holding the energy between the mobile atoms and
    # the fixed atoms
    if disable_grid.val:
        mobile_fixed = InterGroupCLJFF("mobile-fixed")
        mobile_fixed = setCLJProperties(mobile_fixed)
        mobile_fixed = setFakeGridProperties(mobile_fixed, space)
        mobile_fixed.add(mobile_buffered_mols, MGIdx(0))
        mobile_fixed.add(fixed_group, MGIdx(1))
        other_nrg += mobile_fixed.components().total()
        forcefields.append(mobile_fixed)
    else:
        mobile_fixed = GridFF2("mobile-fixed")
        mobile_fixed = setCLJProperties(mobile_fixed, space)
        mobile_fixed = setGridProperties(mobile_fixed)

        # we use mobile_buffered_group as this group misses out atoms that are bonded
        # to fixed atoms (thus preventing large energies caused by incorrect non-bonded calculations)
        mobile_fixed.add(mobile_buffered_mols, MGIdx(0))
        mobile_fixed.addFixedAtoms(fixed_group)
        other_nrg += mobile_fixed.components().total()
        forcefields.append(mobile_fixed)

    # intramolecular energy of the protein
    if protein_intra_mols.nMolecules() > 0:
        protein_intraclj = IntraCLJFF("protein_intraclj")
        protein_intraclj = setCLJProperties(protein_intraclj, space)

        protein_intraff = InternalFF("protein_intra")

        for molnum in protein_intra_mols.molNums():
            protein_mol = Molecule.join(protein_intra_mols[molnum])
            protein_intraclj.add(protein_mol)
            protein_intraff.add(protein_mol)

        other_nrg += protein_intraclj.components().total()
        other_nrg += protein_intraff.components().total()
        forcefields.append(protein_intraclj)
        forcefields.append(protein_intraff)

    # intramolecular energy of any other solutes
    if solute_intra_mols.nMolecules() > 0:
        solute_intraclj = IntraCLJFF("solute_intraclj")
        solute_intraclj = setCLJProperties(solute_intraclj, space)

        solute_intraff = InternalFF("solute_intra")

        for molnum in solute_intra_mols.molNums():
            solute_mol = Molecule.join(solute_intra_mols[molnum])
            solute_intraclj.add(solute_mol)
            solute_intraff.add(solute_mol)

        other_nrg += solute_intraclj.components().total()
        other_nrg += solute_intraff.components().total()
        forcefields.append(solute_intraclj)
        forcefields.append(solute_intraff)

    ###
    ### NOW ADD THE FORCEFIELDS TO THE SYSTEM
    ###
    ###
    ### SETTING THE FORCEFIELD EXPRESSIONS
    ###

    lam = Symbol("lambda")

    e_slow = ((1 - lam) * ligand_qm_nrg) + (lam * ligand_mm_nrg) + other_nrg
    e_fast = ligand_mm_nrg + other_nrg

    de_by_dlam = ligand_mm_nrg - ligand_qm_nrg

    for forcefield in forcefields:
        system.add(forcefield)

    system.setConstant(lam, 0.0)

    system.setComponent(Symbol("E_{fast}"), e_fast)
    system.setComponent(Symbol("E_{slow}"), e_slow)
    system.setComponent(Symbol("dE/dlam"), de_by_dlam)
    system.setComponent(system.totalComponent(), e_slow)

    system.setProperty("space", space)

    if space.isPeriodic():
        # ensure that all molecules are wrapped into the space with the ligand at the center
        print("Adding in a space wrapper constraint %s, %s" %
              (space, ligand_mol.evaluate().center()))
        system.add(SpaceWrapper(ligand_mol.evaluate().center(), all_group))
        system.applyConstraints()

    print("\nHere are the values of all of the initial energy components...")
    t.start()
    printEnergies(system.energies())
    print("(these took %d ms to evaluate)\n" % t.elapsed())

    # Create a monitor to monitor the free energy average
    system.add("dG/dlam",
               MonitorComponent(Symbol("dE/dlam"), AverageAndStddev()))

    if intermolecular_only.val:
        print(
            "\n\n## This simulation uses QM to model *only* the intermolecular energy between"
        )
        print(
            "## the QM and MM atoms. The intramolecular energy of the QM atoms is still"
        )
        print("## modelled using MM.\n")
    else:
        print(
            "\n\n## This simulation uses QM to model both the intermolecular and intramolecular"
        )
        print(
            "## energies of the QM atoms. Because the this, we have to adjust the 'zero' point"
        )
        print(
            "## of the QM potential. You need to add the value %s kcal mol-1 back onto the"
            % zero_energy)
        print("## QM->MM free energy calculated using this program.\n")

    return system
Exemple #3
0
def loadQMMMSystem():
    """This function is called to set up the system. It sets everything
       up, then returns a System object that holds the configured system"""

    print("Loading the system...")

    t = QTime()

    if os.path.exists(s3file.val):
        print("Loading existing s3 file %s..." % s3file.val)
        loadsys = Sire.Stream.load(s3file.val)

    else:
        print("Loading from Amber files %s / %s..." % (topfile.val, crdfile.val))
        # Add the name of the ligand to the list of solute molecules
        sys_scheme = NamingScheme()
        sys_scheme.addSoluteResidueName(ligand_name.val)

        # Load up the system. This will automatically find the protein, solute, water, solvent
        # and ion molecules and assign them to different groups
        loadsys = createSystem(topfile.val, crdfile.val, sys_scheme)
        ligand_mol = findMolecule(loadsys, ligand_name.val)

        if ligand_mol is None:
            print("Cannot find the ligand (%s) in the set of loaded molecules!" % ligand_name.val)
            sys.exit(-1)

        # Center the system with the ligand at (0,0,0)
        loadsys = centerSystem(loadsys, ligand_mol)
        ligand_mol = loadsys[ligand_mol.number()].molecule()

        if reflection_radius.val is None:
            loadsys = addFlexibility(loadsys, naming_scheme=sys_scheme )
        else:
            loadsys = addFlexibility(loadsys, Vector(0), reflection_radius.val, naming_scheme=sys_scheme)

        Sire.Stream.save(loadsys, s3file.val)

    ligand_mol = findMolecule(loadsys, ligand_name.val)

    if ligand_mol is None:
        print("Cannot find the ligand (%s) in the set of loaded molecules!" % ligand_name.val)
        sys.exit(-1)

    # Now build the QM/MM system
    system = System("QMMM system")

    if loadsys.containsProperty("reflection center"):
        reflect_center = loadsys.property("reflection center").toVector()[0]
        reflect_radius = float(str(loadsys.property("reflection sphere radius")))

        system.setProperty("reflection center", AtomCoords(CoordGroup(1,reflect_center)))
        system.setProperty("reflection sphere radius", VariantProperty(reflect_radius))
        space = Cartesian()
    else:
        space = loadsys.property("space")

    if loadsys.containsProperty("average solute translation delta"):
        system.setProperty("average solute translation delta", \
                           loadsys.property("average solute translation delta"))

    if loadsys.containsProperty("average solute rotation delta"):
        system.setProperty("average solute rotation delta", \
                           loadsys.property("average solute rotation delta"))

    # create a molecule group to hold all molecules
    all_group = MoleculeGroup("all")

    # create a molecule group for the ligand
    ligand_group = MoleculeGroup("ligand")
    ligand_group.add(ligand_mol)
    all_group.add(ligand_mol)

    groups = []
    groups.append(ligand_group)

    # pull out the groups that we want from the two systems

    # create a group to hold all of the fixed molecules in the bound leg
    fixed_group = MoleculeGroup("fixed_molecules")
    if MGName("fixed_molecules") in loadsys.mgNames():
        fixed_group.add( loadsys[ MGName("fixed_molecules") ] )

    if save_pdb.val:
        # write a PDB of the fixed atoms in the bound and free legs
        if not os.path.exists(outdir.val):
            os.makedirs(outdir.val)

        PDB().write(fixed_group, "%s/fixed.pdb" % outdir.val)

    # create a group to hold all of the mobile solute molecules
    mobile_solutes_group = MoleculeGroup("mobile_solutes")
    if MGName("mobile_solutes") in loadsys.mgNames():
        mobile_solutes_group.add( loadsys[MGName("mobile_solutes")] )
        mobile_solutes_group.remove(ligand_mol)
        if mobile_solutes_group.nMolecules() > 0:
            all_group.add(mobile_solutes_group)
    
    groups.append(mobile_solutes_group)

    # create a group to hold all of the mobile solvent molecules
    mobile_solvents_group = MoleculeGroup("mobile_solvents")
    if MGName("mobile_solvents") in loadsys.mgNames():
        mols = loadsys[MGName("mobile_solvents")]
        for molnum in mols.molNums():
            solvent_mol = mols[molnum].molecule()
            mobile_solvents_group.add(solvent_mol)

        all_group.add(mobile_solvents_group)

        print("The number of mobile solvent molecules is %d." % mobile_solvents_group.nMolecules())

    groups.append(mobile_solvents_group)

    # create the groups to hold all of the protein molecules. We will use "extract" to 
    # pull out only those protein atoms that are in the mobile region
    protein_intra_group = MoleculeGroup("protein_intra_group")
    mobile_proteins_group = MoleculeGroup("proteins")
    mobile_protein_sidechains_group = MoleculeGroup("mobile_sidechains")
    mobile_protein_backbones_group = MoleculeGroup("mobile_backbones")

    if MGName("protein_sidechains") in loadsys.mgNames() or \
       MGName("protein_backbones") in loadsys.mgNames():

        all_proteins = Molecules()

        try:
            protein_sidechains = loadsys[MGName("protein_sidechains")]
            all_proteins.add(protein_sidechains.molecules())
        except:
            protein_sidechains = MoleculeGroup()

        try:
            protein_backbones = loadsys[MGName("protein_backbones")]
            all_proteins.add(protein_backbones.molecules())
        except:
            protein_backbones = MoleculeGroup()

        try:
            boundary_molecules = loadsys[MGName("boundary_molecules")]
            all_proteins.add(boundary_molecules.molecules())
        except:
            boundary_molecules = MoleculeGroup()

        for molnum in all_proteins.molNums():
            protein_mol = all_proteins[molnum].join()
            
            if protein_mol.selectedAll():
                protein_intra_group.add(protein_mol)
                all_group.add(protein_mol)

                mobile_protein = None                

                try:
                    mobile_protein = protein_sidechains[molnum]
                    mobile_protein_sidechains_group.add( mobile_protein )
                except:
                    pass

                try:
                    if mobile_protein is None:
                        mobile_protein = protein_backbones[molnum]
                        mobile_protein_backbones_group.add( mobile_protein )
                    else:
                        mobile_protein.add( protein_backbones[molnum].selection() )
                        mobile_protein_backbones_group.add( protein_backbones[molnum] )
                except:
                    pass

                if not (mobile_protein is None):
                    mobile_proteins_group.add( mobile_protein.join() )

            else:
                # only some of the atoms have been selected. We will extract
                # the mobile atoms and will then update all of the other selections
                print("Extracting the mobile atoms of protein %s" % protein_mol)
                new_protein_mol = protein_mol.extract()
                print("Extracted %d mobile atoms from %d total atoms..." % \
                                        (new_protein_mol.nAtoms(), protein_mol.molecule().nAtoms()))

                protein_intra_group.add(new_protein_mol)
                all_group.add( new_protein_mol )

                mobile_protein_view = new_protein_mol.selection()
                mobile_protein_view = mobile_protein_view.selectNone()

                try:
                    sidechains = protein_sidechains[molnum]

                    for i in range(0,sidechains.nViews()):
                        view = new_protein_mol.selection()
                        view = view.selectNone()

                        for atomid in sidechains.viewAt(i).selectedAtoms():
                            atom = protein_mol.atom(atomid)
                            resatomid = ResAtomID( atom.residue().number(), atom.name() )
                            view = view.select( resatomid )
                            mobile_protein_view = mobile_protein_view.select( resatomid )

                        if view.nSelected() > 0:
                            mobile_protein_sidechains_group.add( PartialMolecule(new_protein_mol, view) )
                except:
                    pass

                try:
                    backbones = protein_backbones[molnum]

                    for i in range(0,backbones.nViews()):
                        view = new_protein_mol.selection()
                        view = view.selectNone()

                        for atomid in backbones.viewAt(i).selectedAtoms():
                            atom = protein_mol.atom(atomid)
                            resatomid = ResAtomID( atom.residue().number(), atom.name() )
                            view = view.select( resatomid )
                            mobile_protein_view = mobile_protein_view.select( resatomid )

                        if view.nSelected() > 0:
                            mobile_protein_backbones_group.add( PartialMolecule(new_protein_mol, view) )
                except:
                    pass

                if mobile_protein_view.nSelected() > 0:
                    mobile_proteins_group.add( PartialMolecule(new_protein_mol, mobile_protein_view) )

    groups.append(mobile_protein_backbones_group)
    groups.append(mobile_protein_sidechains_group)
    groups.append(all_group)

    # finished added in all of the proteins
    for group in groups:
        if group.nMolecules() > 0:
            print("Adding group %s" % group.name())
            system.add(group)

    # now add in the forcefields for the system...
    print("Creating the forcefields for the QM/MM system...")

    # first, group together the molecules grouped above into convenient
    # groups for the forcefields

    # group holding just the ligand
    ligand_mols = ligand_group.molecules()

    # group holding all of the mobile atoms
    mobile_mols = mobile_solvents_group.molecules()
    mobile_mols.add( mobile_solutes_group.molecules() )
    mobile_mols.add( protein_intra_group.molecules() )

    # group holding all of the mobile atoms in the bound leg, excluding the 
    # buffer atoms that are fixed, but bonded to mobile atoms
    mobile_buffered_mols = mobile_solvents_group.molecules()
    mobile_buffered_mols.add( mobile_solutes_group.molecules() )
    mobile_buffered_mols.add( mobile_proteins_group.molecules() )

    # group holding all of the protein molecules that need intramolecular terms calculated
    protein_intra_mols = protein_intra_group.molecules()

    # group holding all of the solute molecules that nede intramolecular terms calculated
    solute_intra_mols = mobile_solutes_group.molecules()

    forcefields = []

    ###
    ### INTRA-ENERGY OF THE LIGAND AND CLUSTER
    ###
    
    # intramolecular energy of the ligand
    ligand_intraclj = IntraCLJFF("ligand:intraclj")
    ligand_intraclj = setCLJProperties(ligand_intraclj, space)
    ligand_intraclj.add(ligand_mols)

    ligand_intraff = InternalFF("ligand:intra")
    ligand_intraff.add(ligand_mols)

    forcefields.append(ligand_intraclj)
    forcefields.append(ligand_intraff)

    ligand_mm_nrg = ligand_intraclj.components().total() + ligand_intraff.components().total()

    ###
    ### FORCEFIELDS INVOLVING THE LIGAND/CLUSTER AND OTHER ATOMS
    ###

    # forcefield holding the energy between the ligand and the mobile atoms in the
    # bound leg
    ligand_mobile = InterGroupCLJFF("system:ligand-mobile")
    ligand_mobile = setCLJProperties(ligand_mobile, space)

    ligand_mobile.add(ligand_mols, MGIdx(0))
    ligand_mobile.add(mobile_mols, MGIdx(1))

    qm_ligand = QMMMFF("system:ligand-QM")    
    qm_ligand = setQMProperties(qm_ligand, space)

    qm_ligand.add(ligand_mols, MGIdx(0))

    zero_energy = 0

    if not intermolecular_only.val:
        if qm_zero_energy.val is None:
            # calculate the delta value for the system - this is the difference between
            # the MM and QM intramolecular energy of the ligand
            t.start()
            print("\nComparing the MM and QM energies of the ligand...")
            mm_intra = ligand_intraclj.energy().value() + ligand_intraff.energy().value()
            print("MM energy = %s kcal mol-1 (took %s ms)" % (mm_intra, t.elapsed()))

            t.start()
            qm_intra = qm_ligand.energy().value()
            print("QM energy = %s kcal mol-1 (took %s ms)" % (qm_intra, t.elapsed()))

            print("\nSetting the QM zero energy to %s kcal mol-1" % (qm_intra - mm_intra))
            qm_ligand.setZeroEnergy( (qm_intra-mm_intra) * kcal_per_mol )
            zero_energy = qm_intra - mm_intra
        else:
            print("\nManually setting the QM zero energy to %s" % qm_zero_energy.val)
            qm_ligand.setZeroEnergy( qm_zero_energy.val )
            zero_energy = qm_zero_energy.val

    qm_ligand.add(mobile_mols, MGIdx(1))

    ligand_mm_nrg += ligand_mobile.components().total()
    ligand_qm_nrg = qm_ligand.components().total() + ligand_mobile.components().lj()

    if intermolecular_only.val:
        # the QM model still uses the MM intramolecular energy of the ligand
        ligand_qm_nrg += ligand_intraclj.components().total() + ligand_intraff.components().total()

    forcefields.append(ligand_mobile)
    forcefields.append(qm_ligand)

    if fixed_group.nMolecules() > 0:
        # there are fixed molecules

        # Whether or not to disable the grid and calculate all energies atomisticly
        if disable_grid:
            # we need to renumber all of the fixed molecules so that they don't clash
            # with the mobile molecules
            print("Renumbering fixed molecules...")
            fixed_group = renumberMolecules(fixed_group)

        # forcefield holding the energy between the ligand and the fixed atoms in the bound leg
        if disable_grid:
            ligand_fixed = InterGroupCLJFF("system:ligand-fixed")
            ligand_fixed = setCLJProperties(ligand_fixed, space)
            ligand_fixed = setFakeGridProperties(ligand_fixed, space)

            ligand_fixed.add(ligand_mols, MGIdx(0))
            ligand_fixed.add(fixed_group, MGIdx(1))

            qm_ligand.add(fixed_group, MGIdx(1))

            ligand_mm_nrg += ligand_fixed.components().total()
            ligand_qm_nrg += ligand_fixed.components().lj()

            forcefields.append(ligand_fixed)

        else:
            ligand_fixed = GridFF("system:ligand-fixed")
            ligand_fixed = setCLJProperties(ligand_fixed, space)
            ligand_fixed = setGridProperties(ligand_fixed)

            ligand_fixed.add(ligand_mols, MGIdx(0))
            ligand_fixed.addFixedAtoms( fixed_group )

            qm_ligand.addFixedAtoms( fixed_group )

            ligand_mm_nrg += ligand_fixed.components().total()
            ligand_qm_nrg += ligand_fixed.components().lj()

            forcefields.append(ligand_fixed)

    ###
    ### FORCEFIELDS NOT INVOLVING THE LIGAND
    ###

    # forcefield holding the intermolecular energy between all molecules
    mobile_mobile = InterCLJFF("mobile-mobile")
    mobile_mobile = setCLJProperties(mobile_mobile, space)

    mobile_mobile.add(mobile_mols)

    other_nrg = mobile_mobile.components().total()
    forcefields.append(mobile_mobile)

    # forcefield holding the energy between the mobile atoms and  
    # the fixed atoms
    if disable_grid.val:
        mobile_fixed = InterGroupCLJFF("mobile-fixed")
        mobile_fixed = setCLJProperties(mobile_fixed)
        mobile_fixed = setFakeGridProperties(mobile_fixed, space)
        mobile_fixed.add(mobile_buffered_mols, MGIdx(0))
        mobile_fixed.add(fixed_group, MGIdx(1))
        other_nrg += mobile_fixed.components().total()
        forcefields.append(mobile_fixed)
    else:
        mobile_fixed = GridFF("mobile-fixed")
        mobile_fixed = setCLJProperties(mobile_fixed, space)
        mobile_fixed = setGridProperties(mobile_fixed)

        # we use mobile_buffered_group as this group misses out atoms that are bonded
        # to fixed atoms (thus preventing large energies caused by incorrect non-bonded calculations)
        mobile_fixed.add(mobile_buffered_mols, MGIdx(0))
        mobile_fixed.addFixedAtoms(fixed_group)
        other_nrg += mobile_fixed.components().total()
        forcefields.append(mobile_fixed)

    # intramolecular energy of the protein
    if protein_intra_mols.nMolecules() > 0:
        protein_intraclj = IntraCLJFF("protein_intraclj")
        protein_intraclj = setCLJProperties(protein_intraclj, space)

        protein_intraff = InternalFF("protein_intra")

        for molnum in protein_intra_mols.molNums():
            protein_mol = protein_intra_mols[molnum].join()
            protein_intraclj.add(protein_mol)
            protein_intraff.add(protein_mol)

        other_nrg += protein_intraclj.components().total()
        other_nrg += protein_intraff.components().total()
        forcefields.append(protein_intraclj)
        forcefields.append(protein_intraff)

    # intramolecular energy of any other solutes
    if solute_intra_mols.nMolecules() > 0:
        solute_intraclj = IntraCLJFF("solute_intraclj")
        solute_intraclj = setCLJProperties(solute_intraclj, space)

        solute_intraff = InternalFF("solute_intra")

        for molnum in solute_intra_mols.molNums():
            solute_mol = solute_intra_mols[molnum].join()
            solute_intraclj.add(solute_mol)
            solute_intraff.add(solute_mol)

        other_nrg += solute_intraclj.components().total()
        other_nrg += solute_intraff.components().total()
        forcefields.append(solute_intraclj)
        forcefields.append(solute_intraff)

    ###
    ### NOW ADD THE FORCEFIELDS TO THE SYSTEM
    ###
    ###
    ### SETTING THE FORCEFIELD EXPRESSIONS
    ###

    lam = Symbol("lambda")

    e_slow = ((1-lam) * ligand_qm_nrg) + (lam * ligand_mm_nrg) + other_nrg
    e_fast = ligand_mm_nrg + other_nrg

    de_by_dlam = ligand_mm_nrg - ligand_qm_nrg

    for forcefield in forcefields:
        system.add(forcefield)

    system.setConstant(lam, 0.0)

    system.setComponent(Symbol("E_{fast}"), e_fast)
    system.setComponent(Symbol("E_{slow}"), e_slow)
    system.setComponent(Symbol("dE/dlam"), de_by_dlam)
    system.setComponent( system.totalComponent(), e_slow )
 
    system.setProperty("space", space)
    
    if space.isPeriodic():
        # ensure that all molecules are wrapped into the space with the ligand at the center
        print("Adding in a space wrapper constraint %s, %s" % (space, ligand_mol.evaluate().center()))
        system.add( SpaceWrapper( ligand_mol.evaluate().center(), all_group ) )
        system.applyConstraints()

    print("\nHere are the values of all of the initial energy components...")
    t.start()
    printEnergies(system.energies())
    print("(these took %d ms to evaluate)\n" % t.elapsed())

    # Create a monitor to monitor the free energy average
    system.add( "dG/dlam", MonitorComponent(Symbol("dE/dlam"), AverageAndStddev()) )

    if intermolecular_only.val:
        print("\n\n## This simulation uses QM to model *only* the intermolecular energy between")
        print("## the QM and MM atoms. The intramolecular energy of the QM atoms is still")
        print("## modelled using MM.\n")
    else:
        print("\n\n## This simulation uses QM to model both the intermolecular and intramolecular")
        print("## energies of the QM atoms. Because the this, we have to adjust the 'zero' point")
        print("## of the QM potential. You need to add the value %s kcal mol-1 back onto the" % zero_energy)
        print("## QM->MM free energy calculated using this program.\n")

    return system
Exemple #4
0
# Sire performs simulations on simulation System objects.
# A System groups together all of the molecules, forcefields etc.
# into a single unit
system = System()
system.add(cljff)

# Here we create the equation used to calculate the total energy of the
# system. We define a symbol, lambda, which we use here to scale up and
# down the coulomb component of cljff
lam = Symbol("lambda")
total_nrg = cljff.components().lj() + lam * cljff.components().coulomb()

# Here we tell the system to use our equation to calculate the total
# energy, and we set the value of lambda to 0.5
system.setComponent( system.totalComponent(), total_nrg )
system.setConstant( lam, 0.5 )

# Now we create a MoleculeGroup that groups together all of the 
# molecules to be moved
mobile_mols = MoleculeGroup("mobile_molecules")
mobile_mols.add(first_water)
mobile_mols.add(second_water)

# We add the molecule group to the system
system.add(mobile_mols)

# We create a periodic boundaries space, and give it to the system
space = PeriodicBox( Vector(5,5,5) )
system.setProperty( "space", space )

# We also add a SpaceWrapper that ensures any moves on mobile_mols
Exemple #5
0
mol = mol.edit().rename("SB2").commit()

mol = protoms.parameterise(mol, ProtoMS.SOLUTE)

perturbations = mol.property("perturbations")

print(perturbations)

print(perturbations.requiredSymbols())
print(perturbations.requiredProperties())

lam = perturbations.symbols().Lambda()

system = System()

solute = MoleculeGroup("solute", mol)

system.add(solute)

system.setConstant(lam, 0.0)
system.add( PerturbationConstraint(solute) )

print(system.constraintsSatisfied())

for i in range(0,101,10):
    system.setConstant(lam, 0.01 * i)

    PDB().write(system.molecules(), "test_%003d.pdb" % i)

Exemple #6
0
def createSystem():
    protomsdir = "%s/Work/ProtoMS" % os.getenv("HOME")

    protoms = ProtoMS( "%s/protoms2" % protomsdir )

    protoms.addParameterFile( "%s/parameter/amber99.ff" % protomsdir )
    protoms.addParameterFile( "%s/parameter/solvents.ff" % protomsdir )
    protoms.addParameterFile( "%s/parameter/gaff.ff" % protomsdir )
    protoms.addParameterFile( solute_params )

    solute = PDB().readMolecule(solute_file)
    solute = solute.edit().rename(solute_name).commit()
    solute = protoms.parameterise(solute, ProtoMS.SOLUTE)

    perturbation = solute.property("perturbations")

    lam = Symbol("lambda")
    lam_fwd = Symbol("lambda_{fwd}")
    lam_bwd = Symbol("lambda_{bwd}")

    initial = Perturbation.symbols().initial()
    final = Perturbation.symbols().final()

    solute = solute.edit().setProperty("perturbations",
                perturbation.recreate( (1-lam)*initial + lam*final ) ).commit()

    solute_fwd = solute.edit().renumber().setProperty("perturbations",
                perturbation.substitute( lam, lam_fwd ) ).commit()
    solute_bwd = solute.edit().renumber().setProperty("perturbations",
                perturbation.substitute( lam, lam_bwd ) ).commit()

    solvent = PDB().read(solvent_file)

    tip4p = solvent.moleculeAt(0).molecule()
    tip4p = tip4p.edit().rename(solvent_name).commit()
    tip4p = protoms.parameterise(tip4p, ProtoMS.SOLVENT)

    tip4p_chgs = tip4p.property("charge")
    tip4p_ljs = tip4p.property("LJ")

    for i in range(0,solvent.nMolecules()):
        tip4p = solvent.moleculeAt(i).molecule()
        tip4p = tip4p.edit().rename(solvent_name) \
                            .setProperty("charge", tip4p_chgs) \
                            .setProperty("LJ", tip4p_ljs) \
                            .commit()

        solvent.update(tip4p)

    system = System()

    solutes = MoleculeGroup("solutes")
    solutes.add(solute)
    solutes.add(solute_fwd)
    solutes.add(solute_bwd)

    solvent = MoleculeGroup("solvent", solvent)

    all = MoleculeGroup("all")
    all.add(solutes)
    all.add(solvent)

    system.add(solutes)
    system.add(solvent)
    system.add(all)

    solventff = InterCLJFF("solvent:solvent")
    solventff.add(solvent)

    solute_intraff = InternalFF("solute_intraff")
    solute_intraff.add(solute)

    solute_fwd_intraff = InternalFF("solute_fwd_intraff")
    solute_fwd_intraff.add(solute_fwd)

    solute_bwd_intraff = InternalFF("solute_bwd_intraff")
    solute_bwd_intraff.add(solute_bwd)

    solute_intraclj = IntraCLJFF("solute_intraclj")
    solute_intraclj.add(solute)

    solute_fwd_intraclj = IntraCLJFF("solute_fwd_intraclj")
    solute_fwd_intraclj.add(solute_fwd)

    solute_bwd_intraclj = IntraCLJFF("solute_bwd_intraclj")
    solute_bwd_intraclj.add(solute_bwd)

    solute_solventff = InterGroupCLJFF("solute:solvent")
    solute_solventff.add(solute, MGIdx(0))
    solute_solventff.add(solvent, MGIdx(1))

    solute_fwd_solventff = InterGroupCLJFF("solute_fwd:solvent")
    solute_fwd_solventff.add(solute_fwd, MGIdx(0))
    solute_fwd_solventff.add(solvent, MGIdx(1))

    solute_bwd_solventff = InterGroupCLJFF("solute_bwd:solvent")
    solute_bwd_solventff.add(solute_bwd, MGIdx(0))
    solute_bwd_solventff.add(solvent, MGIdx(1))

    forcefields = [ solventff, solute_intraff, solute_intraclj, solute_solventff,
                               solute_fwd_intraff, solute_fwd_intraclj, solute_fwd_solventff,
                               solute_bwd_intraff, solute_bwd_intraclj, solute_bwd_solventff ]

    for forcefield in forcefields:
        system.add(forcefield)

    xsc_line = open(solvent_file, "r").readlines()[0]
    words = xsc_line.split()

    #HEADER box  -12.5  -12.5  -12.5   12.5   12.5   12.5
    space = PeriodicBox( Vector( float(words[2]), float(words[3]), float(words[4]) ),
                         Vector( float(words[5]), float(words[6]), float(words[7]) ) )

    system.setProperty( "space", space )
    system.setProperty( "switchingFunction", 
                        HarmonicSwitchingFunction(coulomb_cutoff, coulomb_feather,
                                              lj_cutoff, lj_feather) )
    system.setProperty( "combiningRules", VariantProperty(combining_rules) )

    e_total = system.totalComponent()
    e_fwd = Symbol("E_{fwd}")
    e_bwd = Symbol("E_{bwd}")

    total_nrg = solventff.components().total() + \
                solute_intraclj.components().total() + solute_intraff.components().total() + \
                solute_solventff.components().total()

    fwd_nrg = solventff.components().total() + \
              solute_fwd_intraclj.components().total() + solute_fwd_intraff.components().total() + \
              solute_fwd_solventff.components().total()

    bwd_nrg = solventff.components().total() + \
              solute_bwd_intraclj.components().total() + solute_bwd_intraff.components().total() + \
              solute_bwd_solventff.components().total()

    system.setComponent( e_total, total_nrg )
    system.setComponent( e_fwd, fwd_nrg )
    system.setComponent( e_bwd, bwd_nrg )

    system.setConstant(lam, 0.0)
    system.setConstant(lam_fwd, 0.0)
    system.setConstant(lam_bwd, 0.0)

    system.add( SpaceWrapper(Vector(0,0,0), all) )

    system.add( PerturbationConstraint(solutes) )

    system.add( ComponentConstraint( lam_fwd, Min( lam + delta_lambda, 1 ) ) )
    system.add( ComponentConstraint( lam_bwd, Max( lam - delta_lambda, 0 ) ) )

    de_fwd = Symbol("de_fwd")
    de_bwd = Symbol("de_bwd")

    system.setComponent( de_fwd, fwd_nrg - total_nrg )
    system.setComponent( de_bwd, total_nrg - bwd_nrg )

    system.add( "total_energy", MonitorComponent(e_total, Average()) )
    system.add( "de_fwd", MonitorComponent(de_fwd, FreeEnergyAverage(temperature)) )
    system.add( "de_bwd", MonitorComponent(de_bwd, FreeEnergyAverage(temperature)) )

    system.setComponent(lam, 0.0)
    print "LAMBDA=0   : Energy = %f kcal mol-1" % system.energy().to(kcal_per_mol)
    print "             (%f, %f)" % (system.energy(e_fwd).to(kcal_per_mol),
                                   system.energy(e_bwd).to(kcal_per_mol))

    system.setComponent(lam, 0.5)
    print "LAMBDA=0.5 : Energy = %f kcal mol-1" % system.energy().to(kcal_per_mol)
    print "             (%f, %f)" % (system.energy(e_fwd).to(kcal_per_mol),
                                   system.energy(e_bwd).to(kcal_per_mol))

    system.setComponent(lam, 1.0)
    print "LAMBDA=1.0 : Energy = %f kcal mol-1" % system.energy().to(kcal_per_mol)
    print "             (%f, %f)" % (system.energy(e_fwd).to(kcal_per_mol),
                                   system.energy(e_bwd).to(kcal_per_mol))
    return system
Exemple #7
0
# Sire performs simulations on simulation System objects.
# A System groups together all of the molecules, forcefields etc.
# into a single unit
system = System()
system.add(cljff)

# Here we create the equation used to calculate the total energy of the
# system. We define a symbol, lambda, which we use here to scale up and
# down the coulomb component of cljff
lam = Symbol("lambda")
total_nrg = cljff.components().lj() + lam * cljff.components().coulomb()

# Here we tell the system to use our equation to calculate the total
# energy, and we set the value of lambda to 0.5
system.setComponent(system.totalComponent(), total_nrg)
system.setConstant(lam, 0.5)

# Now we create a MoleculeGroup that groups together all of the
# molecules to be moved
mobile_mols = MoleculeGroup("mobile_molecules")
mobile_mols.add(first_water)
mobile_mols.add(second_water)

# We add the molecule group to the system
system.add(mobile_mols)

# We create a periodic boundaries space, and give it to the system
space = PeriodicBox(Vector(5, 5, 5))
system.setProperty("space", space)

# We also add a SpaceWrapper that ensures any moves on mobile_mols