def compute_norm_inhawp(iom, blockid=0, eigentrafo=True): """Compute the norm of a wavepacket timeseries. This function is for inhomogeneous wavepackets. :param iom: An :py:class:`IOManager` instance providing the simulation data. :param blockid: The data block from which the values are read. :type blockid: Integer, Default is ``0`` :param eigentrafo: Whether to make a transformation into the eigenbasis. :type eigentrafo: Boolean, default is ``True``. """ parameters = iom.load_parameters() # Number of time steps we saved timesteps = iom.load_inhomogwavepacket_timegrid(blockid=blockid) nrtimesteps = timesteps.shape[0] # Basis transformator if eigentrafo is True: # The potential used Potential = BlockFactory().create_potential(parameters) BT = BasisTransformationHAWP(Potential) # We want to save norms, thus add a data slot to the data file iom.add_norm(parameters, timeslots=nrtimesteps, blockid=blockid) # Initialize a Hagedorn wavepacket with the data descr = iom.load_inhomogwavepacket_description(blockid=blockid) HAWP = BlockFactory().create_wavepacket(descr) if eigentrafo is True: BT.set_matrix_builder(HAWP.get_quadrature()) # Basis shapes BS_descr = iom.load_inhomogwavepacket_basisshapes() BS = {} for ahash, descr in BS_descr.iteritems(): BS[ahash] = BlockFactory().create_basis_shape(descr) # Iterate over all timesteps for i, step in enumerate(timesteps): print(" Computing norms of timestep "+str(step)) # Retrieve simulation data params = iom.load_inhomogwavepacket_parameters(timestep=step, blockid=blockid) hashes, coeffs = iom.load_inhomogwavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockid) # Configure the wavepacket HAWP.set_parameters(params) HAWP.set_basis_shape([ BS[int(ha)] for ha in hashes ]) HAWP.set_coefficients(coeffs) # Transform to the eigenbasis. if eigentrafo is True: BT.transform_to_eigen(HAWP) # Measure norms in the eigenbasis norm = HAWP.norm() # Save the norms iom.save_norm(norm, timestep=step, blockid=blockid)
def compute_norm_inhawp(iom, blockid=0, eigentrafo=True): """Compute the norm of a wavepacket timeseries. This function is for inhomogeneous wavepackets. :param iom: An :py:class:`IOManager` instance providing the simulation data. :param blockid: The data block from which the values are read. :type blockid: Integer, Default is ``0`` :param eigentrafo: Whether to make a transformation into the eigenbasis. :type eigentrafo: Boolean, default is ``True``. """ parameters = iom.load_parameters() # Number of time steps we saved timesteps = iom.load_inhomogwavepacket_timegrid(blockid=blockid) nrtimesteps = timesteps.shape[0] # Basis transformator if eigentrafo is True: # The potential used Potential = BlockFactory().create_potential(parameters) BT = BasisTransformationHAWP(Potential) # We want to save norms, thus add a data slot to the data file iom.add_norm(parameters, timeslots=nrtimesteps, blockid=blockid) # Initialize a Hagedorn wavepacket with the data descr = iom.load_inhomogwavepacket_description(blockid=blockid) HAWP = BlockFactory().create_wavepacket(descr) if eigentrafo is True: BT.set_matrix_builder(HAWP.get_quadrature()) # Basis shapes BS_descr = iom.load_inhomogwavepacket_basisshapes() BS = {} for ahash, descr in BS_descr.iteritems(): BS[ahash] = BlockFactory().create_basis_shape(descr) # Iterate over all timesteps for i, step in enumerate(timesteps): print(" Computing norms of timestep " + str(step)) # Retrieve simulation data params = iom.load_inhomogwavepacket_parameters(timestep=step, blockid=blockid) hashes, coeffs = iom.load_inhomogwavepacket_coefficients( timestep=step, get_hashes=True, blockid=blockid) # Configure the wavepacket HAWP.set_parameters(params) HAWP.set_basis_shape([BS[int(ha)] for ha in hashes]) HAWP.set_coefficients(coeffs) # Transform to the eigenbasis. if eigentrafo is True: BT.transform_to_eigen(HAWP) # Measure norms in the eigenbasis norm = HAWP.norm() # Save the norms iom.save_norm(norm, timestep=step, blockid=blockid)