def read_data_inhomogeneous(iom, blockid=0):
    r"""
    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    :param blockid: The data block from which the values are read.
    """
    parameters = iom.load_parameters()
    timegrid = iom.load_inhomogwavepacket_timegrid(blockid=blockid)
    time = timegrid * parameters["dt"]

    # The potential used
    Potential = BlockFactory().create_potential(parameters)

    # Basis transformator
    BT = BasisTransformationHAWP(Potential)

    # Basis shapes
    BS_descr = iom.load_wavepacket_basisshapes(blockid=blockid)
    BS = {}
    for ahash, descr in BS_descr.iteritems():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    # Initialize a Hagedorn wavepacket with the data
    descr = iom.load_inhomogwavepacket_description(blockid=blockid)
    HAWP = BlockFactory().create_wavepacket(descr)

    BT.set_matrix_builder(HAWP.get_quadrature())

    # Store the resulting coefficients here
    CI = [ [] for i in xrange(HAWP.get_number_components()) ]

    # Iterate over all timesteps, this is an *expensive* transformation
    for i, step in enumerate(timegrid):
        print(" Computing eigentransformation at timestep "+str(step))
        # Retrieve simulation data
        params = iom.load_inhomogwavepacket_parameters(timestep=step, blockid=blockid)
        hashes, coeffs = iom.load_inhomogwavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockid)

        # Configure the wavepacket
        HAWP.set_parameters(params)
        HAWP.set_basis_shapes([ BS[int(ha)] for ha in hashes ])
        HAWP.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        BT.transform_to_eigen(HAWP)

        for index, item in enumerate(HAWP.get_coefficients()):
            CI[index].append(item)

    CI = [ transpose(hstack(item)) for item in CI ]

    return time, CI
def compute_autocorrelation_inhawp(iom, obsconfig, blockid=0, eigentrafo=True):
    """Compute the autocorrelation of a wavepacket timeseries.
    This function is for inhomogeneous wavepackets.

    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    :param obsconfig: Configuration parameters describing f.e. the inner product to use.
    :type obsconfig: A :py:class:`ParameterProvider` instance.
    :param blockid: The data block from which the values are read.
    :type blockid: Integer, Default is ``0``
    :param eigentrafo: Whether to make a transformation into the eigenbasis.
    :type eigentrafo: Boolean, default is ``True``.
    """
    parameters = iom.load_parameters()

    # Number of time steps we saved
    timesteps = iom.load_inhomogwavepacket_timegrid(blockid=blockid)
    nrtimesteps = timesteps.shape[0]

    # Basis transformator
    if eigentrafo is True:
        # The potential used
        Potential = BlockFactory().create_potential(parameters)
        BT = BasisTransformationHAWP(Potential)

    # We want to save autocorrelations, thus add a data slot to the data file
    iom.add_autocorrelation(parameters, timeslots=nrtimesteps, blockid=blockid)

    # Initialize a Hagedorn wavepacket with the data
    descr = iom.load_inhomogwavepacket_description(blockid=blockid)
    HAWPo = BlockFactory().create_wavepacket(descr)
    HAWPt = BlockFactory().create_wavepacket(descr)

    if eigentrafo is True:
        BT.set_matrix_builder(HAWPo.get_innerproduct())

    # Basis shapes
    BS_descr = iom.load_inhomogwavepacket_basisshapes(blockid=blockid)
    BS = {}
    for ahash, descr in BS_descr.iteritems():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    # Comfigure the original wavepacket
    # Retrieve simulation data
    params = iom.load_wavepacket_parameters(timestep=0, blockid=blockid)
    hashes, coeffs = iom.load_wavepacket_coefficients(timestep=0, get_hashes=True, blockid=blockid)
    # Configure the wavepacket
    HAWPo.set_parameters(params)
    HAWPo.set_basis_shapes([ BS[int(ha)] for ha in hashes ])
    HAWPo.set_coefficients(coeffs)

    # Set up the innerproduct for solving the integrals <phi_0 | phi_t>
    IP = BlockFactory().create_inner_product(obsconfig["innerproduct"])

    # Iterate over all timesteps
    for i, step in enumerate(timesteps):
        print(" Computing autocorrelations of timestep "+str(step))

        # Retrieve simulation data
        params = iom.load_inhomogwavepacket_parameters(timestep=step, blockid=blockid)
        hashes, coeffs = iom.load_inhomogwavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockid)

        # Configure the wavepacket
        HAWPt.set_parameters(params)
        HAWPt.set_basis_shapes([ BS[int(ha)] for ha in hashes ])
        HAWPt.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        if eigentrafo is True:
            BT.transform_to_eigen(HAWPt)

        # Measure autocorrelations in the eigenbasis
        acs = IP.quadrature(HAWPo, HAWPt, diagonal=True)

        # Save the autocorrelations
        iom.save_autocorrelation(acs, timestep=step, blockid=blockid)
def compute_evaluate_wavepackets(pp, iom, blockid=0, eigentrafo=True):
    """Evaluate a homogeneous Hagedorn wavepacket on a given grid for each timestep.

    :param pp: An :py:class:`ParameterProvider` instance providing the grid data.
    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    :param blockid: The data block from which the values are read.
    :param eigentrafo: Whether or not do an eigentransformation before evaluation is done.
    """
    parameters = iom.load_parameters()
    if pp is None:
        pp = parameters

    # Number of time steps we saved
    timesteps = iom.load_wavepacket_timegrid(blockid=blockid)
    nrtimesteps = timesteps.shape[0]

    # Prepare the potential for basis transformations
    Potential = BlockFactory().create_potential(parameters)
    grid = BlockFactory().create_grid(pp)

    # We want to save wavefunctions, thus add a data slot to the data file
    d = {"ncomponents": parameters["ncomponents"],
         "number_nodes": pp["number_nodes"],
         "dimension": parameters["dimension"]}
    iom.add_grid(d, blockid=blockid)
    iom.add_wavefunction(d, timeslots=nrtimesteps, flat=True, blockid=blockid)

    iom.save_grid(grid.get_nodes(), blockid=blockid)

    # Initialize a Hagedorn wavepacket with the data
    descr = iom.load_wavepacket_description(blockid=blockid)
    HAWP = BlockFactory().create_wavepacket(descr)

    # Basis transformator
    if eigentrafo is True:
        BT = BasisTransformationHAWP(Potential)
        BT.set_matrix_builder(HAWP.get_innerproduct())

    # Basis shapes
    BS_descr = iom.load_wavepacket_basisshapes(blockid=blockid)
    BS = {}
    for ahash, descr in BS_descr.items():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    WF = WaveFunction(parameters)
    WF.set_grid(grid)

    # Iterate over all timesteps
    for i, step in enumerate(timesteps):
        print(" Evaluating homogeneous wavepacket at timestep %d" % step)

        # Retrieve simulation data
        params = iom.load_wavepacket_parameters(timestep=step, blockid=blockid, key=("q", "p", "Q", "P", "S", "adQ"))
        hashes, coeffs = iom.load_wavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockid)

        # Configure the wavepacket
        HAWP.set_parameters(params, key=("q", "p", "Q", "P", "S", "adQ"))
        HAWP.set_basis_shapes([BS[int(ha)] for ha in hashes])
        HAWP.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        if eigentrafo is True:
            BT.transform_to_eigen(HAWP)

        # Evaluate the wavepacket
        values = HAWP.evaluate_at(grid, prefactor=True)
        WF.set_values(values)

        # Save the wave function
        iom.save_wavefunction(WF.get_values(), timestep=step, blockid=blockid)
def compute_energy_inhawp(iom, blockid=0, eigentrafo=True, iseigen=True):
    """Compute the energies of a wavepacket timeseries.
    This function is for inhomogeneous wavepackets.

    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    :param blockid: The data block from which the values are read.
    :type blockid: Integer, Default is ``0``
    :param eigentrafo: Whether to make a transformation into the eigenbasis.
    :type eigentrafo: Boolean, default is ``True``.
    :param iseigen: Whether the data is assumed to be in the eigenbasis.
    :type iseigen: Boolean, default is ``True``
    """
    parameters = iom.load_parameters()

    # Number of time steps we saved
    timesteps = iom.load_inhomogwavepacket_timegrid(blockid=blockid)
    nrtimesteps = timesteps.shape[0]

    # The potential used
    Potential = BlockFactory().create_potential(parameters)

    # Basis transformator
    if eigentrafo is True:
        BT = BasisTransformationHAWP(Potential)

    # We want to save energies, thus add a data slot to the data file
    iom.add_energy(parameters, timeslots=nrtimesteps, blockid=blockid)

    # Initialize a Hagedorn wavepacket with the data
    descr = iom.load_inhomogwavepacket_description(blockid=blockid)
    HAWP = BlockFactory().create_wavepacket(descr)

    if eigentrafo is True:
        BT.set_matrix_builder(HAWP.get_innerproduct())

    # Basis shapes
    BS_descr = iom.load_inhomogwavepacket_basisshapes(blockid=blockid)
    BS = {}
    for ahash, descr in BS_descr.iteritems():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    O = ObservablesHAWP()
    KEY = ("q","p","Q","P","S","adQ")

    # Iterate over all timesteps
    for i, step in enumerate(timesteps):
        print(" Computing energies of timestep "+str(step))

        # Retrieve simulation data
        params = iom.load_inhomogwavepacket_parameters(timestep=step, blockid=blockid, key=KEY)
        hashes, coeffs = iom.load_inhomogwavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockid)

        # Configure the wavepacket
        HAWP.set_parameters(params, key=KEY)
        HAWP.set_basis_shapes([ BS[int(ha)] for ha in hashes ])
        HAWP.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        if eigentrafo is True:
            BT.transform_to_eigen(HAWP)

        # Compute the energies
        O.set_innerproduct(HAWP.get_innerproduct())
        ekin = O.kinetic_energy(HAWP)
        if iseigen is True:
            epot = O.potential_energy(HAWP, Potential.evaluate_eigenvalues_at)
        else:
            epot = O.potential_energy(HAWP, Potential.evaluate_at)

        iom.save_energy((ekin, epot), timestep=step, blockid=blockid)
def compute_norm_hawp(iom, blockid=0, eigentrafo=True):
    """Compute the norm of a wavepacket timeseries.

    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    :param blockid: The data block from which the values are read.
    :type blockid: Integer, Default is ``0``
    :param eigentrafo: Whether to make a transformation into the eigenbasis.
    :type eigentrafo: Boolean, default is ``True``.
    """
    parameters = iom.load_parameters()

    # Number of time steps we saved
    timesteps = iom.load_wavepacket_timegrid(blockid=blockid)
    nrtimesteps = timesteps.shape[0]

    # Basis transformator
    if eigentrafo is True:
        # The potential used
        Potential = BlockFactory().create_potential(parameters)
        BT = BasisTransformationHAWP(Potential)

    # We want to save norms, thus add a data slot to the data file
    iom.add_norm(parameters, timeslots=nrtimesteps, blockid=blockid)

    # Initialize a Hagedorn wavepacket with the data
    descr = iom.load_wavepacket_description(blockid=blockid)
    HAWP = BlockFactory().create_wavepacket(descr)

    if eigentrafo is True:
        BT.set_matrix_builder(HAWP.get_innerproduct())

    # Basis shapes
    BS_descr = iom.load_wavepacket_basisshapes(blockid=blockid)
    BS = {}
    for ahash, descr in BS_descr.iteritems():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    KEY = ("q", "p", "Q", "P", "S", "adQ")

    # Iterate over all timesteps
    for i, step in enumerate(timesteps):
        print(" Computing norms of timestep " + str(step))

        # Retrieve simulation data
        params = iom.load_wavepacket_parameters(timestep=step, blockid=blockid, key=KEY)
        hashes, coeffs = iom.load_wavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockid)

        # Configure the wavepacket
        HAWP.set_parameters(params, key=KEY)
        HAWP.set_basis_shapes([BS[int(ha)] for ha in hashes])
        HAWP.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        if eigentrafo is True:
            BT.transform_to_eigen(HAWP)

        # Measure norms in the eigenbasis
        norm = HAWP.norm()

        # Save the norms
        iom.save_norm(norm, timestep=step, blockid=blockid)
def transform_inhawp_to_eigen(iomin, iomout, blockidin=0, blockidout=0):
    """Compute the transformation to the eigenbasis for a wavepacket.
    Save the result back to a file.

    :param iomin: An :py:class:`IOManager: instance providing the simulation data.
    :param iomout: An :py:class:`IOManager: instance for saving the transformed data.
    :param blockidin: The data block from which the values are read. Default is `0`.
    :param blockidout: The data block to which the values are written. Default is `0`.
    """
    parameters = iomin.load_parameters()

    KEY = ("q","p","Q","P","S","adQ")

    # Number of time steps we saved
    timesteps = iomin.load_inhomogwavepacket_timegrid(blockid=blockidin)
    nrtimesteps = timesteps.shape[0]

    # The potential used
    Potential = BlockFactory().create_potential(parameters)

    # Basis transformator
    BT = BasisTransformationHAWP(Potential)

    # Initialize a Hagedorn wavepacket with the data
    descr = iomin.load_inhomogwavepacket_description(blockid=blockidin)
    HAWP = BlockFactory().create_wavepacket(descr)

    iomout.add_inhomogwavepacket(descr, timeslots=nrtimesteps, blockid=blockidout, key=KEY)
    iomout.save_inhomogwavepacket_description(HAWP.get_description(), blockid=blockidout)

    BT.set_matrix_builder(HAWP.get_innerproduct())

    # Basis shapes
    BS_descr = iomin.load_inhomogwavepacket_basisshapes(blockid=blockidin)
    BS = {}
    for ahash, descr in BS_descr.iteritems():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    # Iterate over all timesteps
    for i, step in enumerate(timesteps):
        print(" Compute eigentransform at timestep # " + str(step))

        # Retrieve simulation data
        params = iomin.load_inhomogwavepacket_parameters(timestep=step, blockid=blockidin, key=KEY)
        hashes, coeffs = iomin.load_inhomogwavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockidin)

        # Configure the wavepacket
        HAWP.set_parameters(params, key=KEY)
        HAWP.set_basis_shapes([ BS[int(ha)] for ha in hashes ])
        HAWP.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        BT.transform_to_eigen(HAWP)

        # Save the transformed packet
        # Pi
        iomout.save_inhomogwavepacket_parameters(HAWP.get_parameters(key=KEY), timestep=step, blockid=blockidout, key=KEY)
        # Basis shapes (in case they changed!)
        for shape in HAWP.get_basis_shapes():
            iomout.save_inhomogwavepacket_basisshapes(shape, blockid=blockidout)
        # Coefficients
        iomout.save_inhomogwavepacket_coefficients(HAWP.get_coefficients(), HAWP.get_basis_shapes(), timestep=step, blockid=blockidout)
Exemple #7
0
def transform_inhawp_to_eigen(iomin, iomout, blockidin=0, blockidout=0):
    """Compute the transformation to the eigenbasis for a wavepacket.
    Save the result back to a file.

    :param iomin: An :py:class:`IOManager: instance providing the simulation data.
    :param iomout: An :py:class:`IOManager: instance for saving the transformed data.
    :param blockidin: The data block from which the values are read. Default is `0`.
    :param blockidout: The data block to which the values are written. Default is `0`.
    """
    parameters = iomin.load_parameters()

    KEY = ("q", "p", "Q", "P", "S", "adQ")

    # Number of time steps we saved
    timesteps = iomin.load_inhomogwavepacket_timegrid(blockid=blockidin)
    nrtimesteps = timesteps.shape[0]

    # The potential used
    Potential = BlockFactory().create_potential(parameters)

    # Basis transformator
    BT = BasisTransformationHAWP(Potential)

    # Initialize a Hagedorn wavepacket with the data
    descr = iomin.load_inhomogwavepacket_description(blockid=blockidin)
    HAWP = BlockFactory().create_wavepacket(descr)

    iomout.add_inhomogwavepacket(descr, timeslots=nrtimesteps, blockid=blockidout, key=KEY)
    iomout.save_inhomogwavepacket_description(HAWP.get_description(), blockid=blockidout)

    BT.set_matrix_builder(HAWP.get_innerproduct())

    # Basis shapes
    BS_descr = iomin.load_inhomogwavepacket_basisshapes(blockid=blockidin)
    BS = {}
    for ahash, descr in BS_descr.items():
        BS[ahash] = BlockFactory().create_basis_shape(descr)

    # Iterate over all timesteps
    for i, step in enumerate(timesteps):
        print(" Compute eigentransform at timestep %d" % step)

        # Retrieve simulation data
        params = iomin.load_inhomogwavepacket_parameters(timestep=step, blockid=blockidin, key=KEY)
        hashes, coeffs = iomin.load_inhomogwavepacket_coefficients(timestep=step, get_hashes=True, blockid=blockidin)

        # Configure the wavepacket
        HAWP.set_parameters(params, key=KEY)
        HAWP.set_basis_shapes([BS[int(ha)] for ha in hashes])
        HAWP.set_coefficients(coeffs)

        # Transform to the eigenbasis.
        BT.transform_to_eigen(HAWP)

        # Save the transformed packet
        # Pi
        iomout.save_inhomogwavepacket_parameters(HAWP.get_parameters(key=KEY), timestep=step, blockid=blockidout, key=KEY)
        # Basis shapes (in case they changed!)
        for shape in HAWP.get_basis_shapes():
            iomout.save_inhomogwavepacket_basisshapes(shape, blockid=blockidout)
        # Coefficients
        iomout.save_inhomogwavepacket_coefficients(HAWP.get_coefficients(), HAWP.get_basis_shapes(), timestep=step, blockid=blockidout)