def main(): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 500 IMG_NAME = 'img' LABEL_NAME = 'label' img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32') # gradient should flow img.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') logits = mnist_cnn_model(img) cost = fluid.layers.cross_entropy(input=logits, label=label) avg_cost = fluid.layers.mean(x=cost) # use CPU place = fluid.CPUPlace() # use GPU # place = fluid.CUDAPlace(0) exe = fluid.Executor(place) BATCH_SIZE = 1 train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=128 * 10), batch_size=BATCH_SIZE) test_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.test(), buf_size=128 * 10), batch_size=BATCH_SIZE) fluid.io.load_params(exe, "./mnist/", main_program=fluid.default_main_program()) # advbox demo m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME, logits.name, avg_cost.name, (-1, 1), channel_axis=1) attack = DeepFoolAttack(m) attack_config = {"iterations": 100, "overshoot": 9} # use train data to generate adversarial examples total_count = 0 fooling_count = 0 for data in train_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # DeepFool non-targeted attack adversary = attack(adversary, **attack_config) # DeepFool targeted attack # tlabel = 0 # adversary.set_target(is_targeted_attack=True, target_label=tlabel) # adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) # plt.imshow(adversary.target, cmap='Greys_r') # plt.show() # np.save('adv_img', adversary.target) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for data in test_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # DeepFool non-targeted attack adversary = attack(adversary, **attack_config) # DeepFool targeted attack # tlabel = 0 # adversary.set_target(is_targeted_attack=True, target_label=tlabel) # adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) # plt.imshow(adversary.target, cmap='Greys_r') # plt.show() # np.save('adv_img', adversary.target) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break print("deelfool attack done")
def main(use_cuda): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 500 IMG_NAME = 'img' LABEL_NAME = 'label' img = fluid.layers.data(name=IMG_NAME, shape=[3, 32, 32], dtype='float32') # gradient should flow img.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') # logits = mnist_cnn_model(img) # logits = vgg_bn_drop(img) logits = resnet_cifar10(img, 32) cost = fluid.layers.cross_entropy(input=logits, label=label) avg_cost = fluid.layers.mean(x=cost) #根据配置选择使用CPU资源还是GPU资源 place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) BATCH_SIZE = 1 test_reader = paddle.batch(paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) fluid.io.load_params(exe, "cifar10/resnet", main_program=fluid.default_main_program()) # advbox demo m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME, logits.name, avg_cost.name, (-1, 1), channel_axis=1) # attack = FGSM(m) attack = DeepFoolAttack(m) # attack = FGSMT(m) # attack_config = {"epsilons": 0.3} attack_config = {"iterations": 100, "overshoot": 9} # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for data in test_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) # FGSMT targeted attack # tlabel = 0 # adversary.set_target(is_targeted_attack=True, target_label=tlabel) # adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) # plt.imshow(adversary.target, cmap='Greys_r') # plt.show() # np.save('adv_img', adversary.target) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break # print("fgsm attack done") print("deelfool attack done")
def main(modulename, imagename): ''' Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune 模型的预训练权重将下载到~/.keras/models/并在载入模型时自动载入 ''' # 设置为测试模式 keras.backend.set_learning_phase(0) model = ResNet50(weights=modulename) logging.info(model.summary()) img = image.load_img(imagename, target_size=(224, 224)) imagedata = image.img_to_array(img) #imagedata=imagedata[:, :, ::-1] imagedata = np.expand_dims(imagedata, axis=0) #logit fc1000 logits = model.get_layer('fc1000').output #keras中获取指定层的方法为: #base_model.get_layer('block4_pool').output) # advbox demo # 因为原始数据没有归一化 所以bounds=(0, 255) KerasMode内部在进行预测和计算梯度时会进行预处理 # imagenet数据集归一化时 标准差为1 mean为[104, 116, 123] m = KerasModel(model, model.input, None, logits, None, bounds=(0, 255), channel_axis=3, preprocess=([104, 116, 123], 1), featurefqueezing_bit_depth=8) attack = DeepFoolAttack(m) attack_config = {"iterations": 100, "overshoot": 10} #y设置为空 会自动计算 adversary = Adversary(imagedata[:, :, ::-1], None) # deepfool non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成iunt8 #::-1 reverses the color channels, because Keras ResNet50 expects BGR instead of RGB adversary_image = adversary_image[:, :, ::-1] adversary_image = np.array(adversary_image).astype("uint8").reshape( [224, 224, 3]) logging.info(adversary_image - imagedata) img = array_to_img(adversary_image) img.save('adversary_image_nontarget.jpg') print("deepfool non-target attack done") attack = DeepFoolAttack(m) attack_config = {"iterations": 100, "overshoot": 10} adversary = Adversary(imagedata[:, :, ::-1], None) tlabel = 489 adversary.set_target(is_targeted_attack=True, target_label=tlabel) # deepfool targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成int8 #::-1 reverses the color channels, because Keras ResNet50 expects BGR instead of RGB adversary_image = adversary_image[:, :, ::-1] adversary_image = np.array(adversary_image).astype("uint8").reshape( [224, 224, 3]) logging.info(adversary_image - imagedata) img = array_to_img(adversary_image) img.save('adversary_image_target.jpg') print("deepfool target attack done")
def main(dirname, imagename): #加载解码的图像 这里是个大坑 tf提供的imagenet预训练好的模型pb文件中 包含针对图像的预处理环节 即解码jpg文件 这部分没有梯度 #需要直接处理解码后的数据 image = None with tf.gfile.Open(imagename, 'rb') as f: image = np.array(Image.open(f).convert('RGB')).astype(np.float) image = [image] session = tf.Session() def create_graph(dirname): with tf.gfile.FastGFile(dirname, 'rb') as f: graph_def = session.graph_def graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') create_graph(dirname) # 初始化参数 非常重要 session.run(tf.global_variables_initializer()) tensorlist = [n.name for n in session.graph_def.node] logger.info(tensorlist) #获取logits logits = session.graph.get_tensor_by_name('softmax/logits:0') x = session.graph.get_tensor_by_name('ExpandDims:0') #y = tf.placeholder(tf.int64, None, name='label') # advbox demo # 因为原始数据没有归一化 所以bounds=(0, 255) m = TensorflowPBModel(session, x, None, logits, None, bounds=(0, 255), channel_axis=3, preprocess=None) attack = DeepFoolAttack(m) attack_config = {"iterations": 100, "overshoot": 0.02} #y设置为空 会自动计算 adversary = Adversary(image, None) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #print(adversary_image - image) #强制类型转换 之前是float 现在要转换成int8 adversary_image = np.array(adversary_image).astype("uint8").reshape( [100, 100, 3]) logging.info(adversary_image - image) #print(adversary_image - image) im = Image.fromarray(adversary_image) im.save("adversary_image_nontarget.jpg") print("DeepFool non-target attack done") attack = DeepFoolAttack(m) attack_config = {"iterations": 100, "overshoot": 0.05} adversary = Adversary(image, None) #麦克风 tlabel = 651 adversary.set_target(is_targeted_attack=True, target_label=tlabel) # FGSM targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成int8 logging.info(adversary_image - image) adversary_image = np.array(adversary_image).astype("uint8").reshape( [100, 100, 3]) im = Image.fromarray(adversary_image) im.save("adversary_image_target.jpg") print("DeepFool target attack done")