示例#1
0
def main():
    """
    Advbox demo which demonstrate how to use advbox.
    """
    TOTAL_NUM = 500
    IMG_NAME = 'img'
    LABEL_NAME = 'label'

    img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
    # gradient should flow
    img.stop_gradient = False
    label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
    logits = mnist_cnn_model(img)
    cost = fluid.layers.cross_entropy(input=logits, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # use CPU
    place = fluid.CPUPlace()
    # use GPU
    # place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)

    BATCH_SIZE = 1
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.mnist.train(), buf_size=128 * 10),
                                batch_size=BATCH_SIZE)

    test_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.mnist.test(), buf_size=128 * 10),
                               batch_size=BATCH_SIZE)

    fluid.io.load_params(exe,
                         "./mnist/",
                         main_program=fluid.default_main_program())

    # advbox demo
    m = PaddleModel(fluid.default_main_program(),
                    IMG_NAME,
                    LABEL_NAME,
                    logits.name,
                    avg_cost.name, (-1, 1),
                    channel_axis=1)
    attack = DeepFoolAttack(m)
    attack_config = {"iterations": 100, "overshoot": 9}

    # use train data to generate adversarial examples
    total_count = 0
    fooling_count = 0
    for data in train_reader():
        total_count += 1
        adversary = Adversary(data[0][0], data[0][1])

        # DeepFool non-targeted attack
        adversary = attack(adversary, **attack_config)

        # DeepFool targeted attack
        # tlabel = 0
        # adversary.set_target(is_targeted_attack=True, target_label=tlabel)
        # adversary = attack(adversary, **attack_config)

        if adversary.is_successful():
            fooling_count += 1
            print(
                'attack success, original_label=%d, adversarial_label=%d, count=%d'
                % (data[0][1], adversary.adversarial_label, total_count))
            # plt.imshow(adversary.target, cmap='Greys_r')
            # plt.show()
            # np.save('adv_img', adversary.target)
        else:
            print('attack failed, original_label=%d, count=%d' %
                  (data[0][1], total_count))

        if total_count >= TOTAL_NUM:
            print(
                "[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
                % (fooling_count, total_count,
                   float(fooling_count) / total_count))
            break

    # use test data to generate adversarial examples
    total_count = 0
    fooling_count = 0
    for data in test_reader():
        total_count += 1
        adversary = Adversary(data[0][0], data[0][1])

        # DeepFool non-targeted attack
        adversary = attack(adversary, **attack_config)

        # DeepFool targeted attack
        # tlabel = 0
        # adversary.set_target(is_targeted_attack=True, target_label=tlabel)
        # adversary = attack(adversary, **attack_config)

        if adversary.is_successful():
            fooling_count += 1
            print(
                'attack success, original_label=%d, adversarial_label=%d, count=%d'
                % (data[0][1], adversary.adversarial_label, total_count))
            # plt.imshow(adversary.target, cmap='Greys_r')
            # plt.show()
            # np.save('adv_img', adversary.target)
        else:
            print('attack failed, original_label=%d, count=%d' %
                  (data[0][1], total_count))

        if total_count >= TOTAL_NUM:
            print(
                "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
                % (fooling_count, total_count,
                   float(fooling_count) / total_count))
            break
    print("deelfool attack done")
def main(use_cuda):
    """
    Advbox demo which demonstrate how to use advbox.
    """
    TOTAL_NUM = 500
    IMG_NAME = 'img'
    LABEL_NAME = 'label'

    img = fluid.layers.data(name=IMG_NAME, shape=[3, 32, 32], dtype='float32')
    # gradient should flow
    img.stop_gradient = False
    label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')

    # logits = mnist_cnn_model(img)
    # logits = vgg_bn_drop(img)
    logits = resnet_cifar10(img, 32)

    cost = fluid.layers.cross_entropy(input=logits, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    #根据配置选择使用CPU资源还是GPU资源
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    BATCH_SIZE = 1
    test_reader = paddle.batch(paddle.dataset.cifar.test10(),
                               batch_size=BATCH_SIZE)

    fluid.io.load_params(exe,
                         "cifar10/resnet",
                         main_program=fluid.default_main_program())

    # advbox demo
    m = PaddleModel(fluid.default_main_program(),
                    IMG_NAME,
                    LABEL_NAME,
                    logits.name,
                    avg_cost.name, (-1, 1),
                    channel_axis=1)
    # attack = FGSM(m)
    attack = DeepFoolAttack(m)
    # attack = FGSMT(m)
    # attack_config = {"epsilons": 0.3}
    attack_config = {"iterations": 100, "overshoot": 9}
    # use test data to generate adversarial examples
    total_count = 0
    fooling_count = 0
    for data in test_reader():
        total_count += 1
        adversary = Adversary(data[0][0], data[0][1])

        # FGSM non-targeted attack
        adversary = attack(adversary, **attack_config)

        # FGSMT targeted attack
        # tlabel = 0
        # adversary.set_target(is_targeted_attack=True, target_label=tlabel)
        # adversary = attack(adversary, **attack_config)

        if adversary.is_successful():
            fooling_count += 1
            print(
                'attack success, original_label=%d, adversarial_label=%d, count=%d'
                % (data[0][1], adversary.adversarial_label, total_count))
            # plt.imshow(adversary.target, cmap='Greys_r')
            # plt.show()
            # np.save('adv_img', adversary.target)
        else:
            print('attack failed, original_label=%d, count=%d' %
                  (data[0][1], total_count))

        if total_count >= TOTAL_NUM:
            print(
                "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
                % (fooling_count, total_count,
                   float(fooling_count) / total_count))
            break
    # print("fgsm attack done")
    print("deelfool attack done")
def main(modulename, imagename):
    '''
    Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune
    模型的预训练权重将下载到~/.keras/models/并在载入模型时自动载入
    '''

    # 设置为测试模式
    keras.backend.set_learning_phase(0)

    model = ResNet50(weights=modulename)

    logging.info(model.summary())

    img = image.load_img(imagename, target_size=(224, 224))
    imagedata = image.img_to_array(img)
    #imagedata=imagedata[:, :, ::-1]
    imagedata = np.expand_dims(imagedata, axis=0)

    #logit fc1000
    logits = model.get_layer('fc1000').output

    #keras中获取指定层的方法为:
    #base_model.get_layer('block4_pool').output)
    # advbox demo
    # 因为原始数据没有归一化  所以bounds=(0, 255)  KerasMode内部在进行预测和计算梯度时会进行预处理
    # imagenet数据集归一化时 标准差为1  mean为[104, 116, 123]
    m = KerasModel(model,
                   model.input,
                   None,
                   logits,
                   None,
                   bounds=(0, 255),
                   channel_axis=3,
                   preprocess=([104, 116, 123], 1),
                   featurefqueezing_bit_depth=8)

    attack = DeepFoolAttack(m)
    attack_config = {"iterations": 100, "overshoot": 10}

    #y设置为空 会自动计算
    adversary = Adversary(imagedata[:, :, ::-1], None)

    # deepfool non-targeted attack
    adversary = attack(adversary, **attack_config)

    if adversary.is_successful():
        print('attack success, adversarial_label=%d' %
              (adversary.adversarial_label))

        #对抗样本保存在adversary.adversarial_example
        adversary_image = np.copy(adversary.adversarial_example)
        #强制类型转换 之前是float 现在要转换成iunt8

        #::-1 reverses the color channels, because Keras ResNet50 expects BGR instead of RGB
        adversary_image = adversary_image[:, :, ::-1]

        adversary_image = np.array(adversary_image).astype("uint8").reshape(
            [224, 224, 3])

        logging.info(adversary_image - imagedata)
        img = array_to_img(adversary_image)
        img.save('adversary_image_nontarget.jpg')

    print("deepfool non-target attack done")

    attack = DeepFoolAttack(m)
    attack_config = {"iterations": 100, "overshoot": 10}

    adversary = Adversary(imagedata[:, :, ::-1], None)

    tlabel = 489
    adversary.set_target(is_targeted_attack=True, target_label=tlabel)

    # deepfool targeted attack
    adversary = attack(adversary, **attack_config)

    if adversary.is_successful():
        print('attack success, adversarial_label=%d' %
              (adversary.adversarial_label))

        #对抗样本保存在adversary.adversarial_example
        adversary_image = np.copy(adversary.adversarial_example)
        #强制类型转换 之前是float 现在要转换成int8

        #::-1 reverses the color channels, because Keras ResNet50 expects BGR instead of RGB
        adversary_image = adversary_image[:, :, ::-1]

        adversary_image = np.array(adversary_image).astype("uint8").reshape(
            [224, 224, 3])

        logging.info(adversary_image - imagedata)
        img = array_to_img(adversary_image)
        img.save('adversary_image_target.jpg')

    print("deepfool target attack done")
def main(dirname, imagename):

    #加载解码的图像 这里是个大坑 tf提供的imagenet预训练好的模型pb文件中 包含针对图像的预处理环节 即解码jpg文件 这部分没有梯度
    #需要直接处理解码后的数据
    image = None
    with tf.gfile.Open(imagename, 'rb') as f:
        image = np.array(Image.open(f).convert('RGB')).astype(np.float)

    image = [image]

    session = tf.Session()

    def create_graph(dirname):
        with tf.gfile.FastGFile(dirname, 'rb') as f:
            graph_def = session.graph_def
            graph_def.ParseFromString(f.read())

            _ = tf.import_graph_def(graph_def, name='')

    create_graph(dirname)

    # 初始化参数  非常重要
    session.run(tf.global_variables_initializer())

    tensorlist = [n.name for n in session.graph_def.node]

    logger.info(tensorlist)

    #获取logits
    logits = session.graph.get_tensor_by_name('softmax/logits:0')

    x = session.graph.get_tensor_by_name('ExpandDims:0')

    #y = tf.placeholder(tf.int64, None, name='label')

    # advbox demo
    # 因为原始数据没有归一化  所以bounds=(0, 255)
    m = TensorflowPBModel(session,
                          x,
                          None,
                          logits,
                          None,
                          bounds=(0, 255),
                          channel_axis=3,
                          preprocess=None)

    attack = DeepFoolAttack(m)
    attack_config = {"iterations": 100, "overshoot": 0.02}

    #y设置为空 会自动计算
    adversary = Adversary(image, None)

    # FGSM non-targeted attack
    adversary = attack(adversary, **attack_config)

    if adversary.is_successful():
        print('attack success, adversarial_label=%d' %
              (adversary.adversarial_label))

        #对抗样本保存在adversary.adversarial_example
        adversary_image = np.copy(adversary.adversarial_example)

        #print(adversary_image - image)

        #强制类型转换 之前是float 现在要转换成int8
        adversary_image = np.array(adversary_image).astype("uint8").reshape(
            [100, 100, 3])

        logging.info(adversary_image - image)
        #print(adversary_image - image)

        im = Image.fromarray(adversary_image)
        im.save("adversary_image_nontarget.jpg")

    print("DeepFool non-target attack done")

    attack = DeepFoolAttack(m)
    attack_config = {"iterations": 100, "overshoot": 0.05}

    adversary = Adversary(image, None)
    #麦克风
    tlabel = 651
    adversary.set_target(is_targeted_attack=True, target_label=tlabel)

    # FGSM targeted attack
    adversary = attack(adversary, **attack_config)

    if adversary.is_successful():
        print('attack success, adversarial_label=%d' %
              (adversary.adversarial_label))

        #对抗样本保存在adversary.adversarial_example
        adversary_image = np.copy(adversary.adversarial_example)
        #强制类型转换 之前是float 现在要转换成int8

        logging.info(adversary_image - image)

        adversary_image = np.array(adversary_image).astype("uint8").reshape(
            [100, 100, 3])
        im = Image.fromarray(adversary_image)
        im.save("adversary_image_target.jpg")

    print("DeepFool target attack done")