Exemple #1
0
    def __getitem__(self, idx):
        imageid = self.image_ids[idx]
        im1 = get_image(imageid, basepath=self.basepath, time='im1')
        im2 = get_image(imageid, basepath=self.basepath, time='im2')

        augmented = self.aug(image=im1, image1=im2)
        return img_to_tensor(augmented['image']), img_to_tensor(
            augmented['image1']), imageid
 def __getitem__(self, idx):
     name = self.names[idx]
     img_path = os.path.join(self.data_path, self.image_type, name)
     image = skimage.io.imread(img_path)
     if image is None:
         raise ValueError(img_path)
     image_path = os.path.join(self.data_path, "train_mask_binned_mc_10", name[:-4].replace("RGB", "MS") + ".tif")
     try:
         raster_ds = gdal.Open(image_path, gdal.GA_ReadOnly)
         speed_mask = raster_ds.ReadAsArray()
     except:
         # retry
         raster_ds = gdal.Open(image_path, gdal.GA_ReadOnly)
         speed_mask = raster_ds.ReadAsArray()
     if speed_mask.shape[-1] > 100:
         speed_mask = np.moveaxis(speed_mask, 0, -1)
     junction_mask = cv2.imread(os.path.join(self.data_path, "junction_masks", name[:-4].replace("PS-RGB_", "").replace("PS-MS_", "") + ".png"), cv2.IMREAD_GRAYSCALE)
     if junction_mask is None:
         junction_mask = np.zeros((1300, 1300))
     if speed_mask is None:
         speed_mask = np.zeros((1300, 1300, 11), dtype=np.uint8)
     sample = self.transforms(image=image, mask=np.concatenate([speed_mask, np.expand_dims(junction_mask, -1), np.expand_dims(junction_mask, -1)], axis=-1), img_name=name)
     mask = sample["mask"]
     city = np.zeros((len(cities), 1, 1))
     city[get_city_idx(name), 0, 0] = 1
     sample['city'] = city
     sample['img_name'] = name
     mask = np.moveaxis(mask, -1, 0) / 255.
     sample['mask'] = torch.from_numpy(mask)
     sample['image'] = img_to_tensor(sample["image"], self.normalize)
     return sample
    def __getitem__(self, idx):
        img_file_name = self.file_names[idx]
        image = load_image(img_file_name)
        mask = load_mask(img_file_name, self.problem_type)

        data = {"image": image, "mask": mask}
        augmented = self.transform(**data)
        image, mask = augmented["image"], augmented["mask"]

        if self.mode == 'train':
            if self.problem_type == 'binary':
                return img_to_tensor(image), torch._C.from_numpy(
                    np.expand_dims(mask, 0)).float()
            else:
                return img_to_tensor(image), torch._C.from_numpy(mask).long()
        else:
            return img_to_tensor(image), str(img_file_name)
Exemple #4
0
    def __getitem__(self, idx):
        imageid = self.image_ids[idx]
        im1 = get_image(imageid, basepath=self.basepath, time='im1')
        im2 = get_image(imageid, basepath=self.basepath, time='im2')

        mask = cv2.imread(f'{self.basepath}/mask/{imageid}.png',
                          cv2.IMREAD_GRAYSCALE)
        assert mask is not None

        augmented = self.aug(image=im1, image1=im2, mask=mask)

        mask_ = (augmented['mask'] > 0).astype(np.uint8)
        mask_ = torch.from_numpy(np.expand_dims(mask_, 0)).float()
        # label_ = torch.from_numpy(np.expand_dims(augmented['mask'], 0)).float()

        return (img_to_tensor(augmented['image']),
                img_to_tensor(augmented['image1']), mask_, imageid)
    def __getitem__(self, idx):
        image_path = self.image_df.iloc[idx].path
        image = self._read_image(image_path, one_channel=False)

        mask_path = self.mask_df.iloc[idx].path
        if mask_path.exists():
            mask = self._read_image(mask_path, one_channel=True)
        else:
            mask = np.zeros_like(image)[:, :, :1]

        if self.transform:
            augmented = self.transform(image=image, mask=mask)
            image = augmented['image']
            mask = augmented['mask']

        image = img_to_tensor(image)
        mask = img_to_tensor(mask)
        return image, mask
 def __getitem__(self, idx):
     name = self.names[idx]
     img_path = os.path.join(self.data_path, name)
     image = skimage.io.imread(img_path)
     if image is None:
         raise ValueError(img_path)
     sample = self.transforms(image=image)
     sample['img_name'] = name
     sample['image'] = img_to_tensor(sample["image"], self.normalize)
     return sample
Exemple #7
0
def pil_img_to_tensor(img: np.ndarray):
    """[Convert np.ndarray Image to torch.Tensor]

    Args:
        img (np.ndarray): [Image ]

    Returns:
        [torch.Tensor]: [returns processed image]
    """
    img_tensor = T.Compose([
        T.ToTensor(),
    ])
    processed_img = img_to_tensor(img)
    return processed_img
def predict_localization(image, config: ModelConfig):
    conf = load_config(config.config_path)
    model = models.__dict__[conf['network']](seg_classes=1,
                                             backbone_arch=conf['encoder'])
    checkpoint_path = os.path.join(weight_path, config.weight_path)
    print("=> loading checkpoint '{}'".format(checkpoint_path))
    checkpoint = torch.load(checkpoint_path, map_location="cpu")
    model.load_state_dict({
        k.replace("module.", ""): v
        for k, v in checkpoint['state_dict'].items()
    })

    model.eval()

    model = model.cpu()
    print("predicting", config)
    with torch.no_grad():
        image = img_to_tensor(image, conf["input"]["normalize"]).cpu().numpy()
        if "dpn" in config.weight_path:
            image = np.pad(image, [(0, 0), (16, 16), (16, 16)], mode='reflect')

        images = np.array([
            image,
            image[:, ::-1, :],
            image[:, :, ::-1],
            image[:, ::-1, ::-1],
        ])
        images = torch.from_numpy(images).cpu().float()
        prediction_masks = []
        for i in range(4):

            logits = model(images[i:i + 1])
            preds = torch.sigmoid(logits).cpu().numpy()

            pred = preds[0]
            if i == 1:
                pred = preds[0].copy()[:, ::-1, :]
            if i == 2:
                pred = preds[0].copy()[:, :, ::-1]
            if i == 3:
                pred = preds[0].copy()[:, ::-1, ::-1]
            prediction_masks.append(pred)

        preds = np.average(prediction_masks, axis=0)
        if "dpn" in config.weight_path:
            preds = preds[:, 16:-16, 16:-16]
        return preds
def predict_damage(image, config: ModelConfig):
    conf = load_config(config.config_path)
    model = models.__dict__[conf['network']](seg_classes=5,
                                             backbone_arch=conf['encoder'])
    checkpoint_path = os.path.join(weight_path, config.weight_path)
    print("=> loading checkpoint '{}'".format(checkpoint_path))
    checkpoint = torch.load(checkpoint_path, map_location="cpu")
    model.load_state_dict(
        {k[7:]: v
         for k, v in checkpoint['state_dict'].items()})

    model.eval()

    model = model.cpu()
    print("predicting", config)
    with torch.no_grad():
        image = img_to_tensor(image, conf["input"]["normalize"]).cpu().numpy()
        images = np.array([
            image,
            image[:, ::-1, :],
            image[:, :, ::-1],
            image[:, ::-1, ::-1],
        ])
        images = torch.from_numpy(images).cpu().float()
        prediction_masks = []
        for i in range(4):

            logits = model(images[i:i + 1])
            preds = torch.softmax(logits, dim=1).cpu().numpy()

            pred = preds[0]
            if i == 1:
                pred = preds[0].copy()[:, ::-1, :]
            if i == 2:
                pred = preds[0].copy()[:, :, ::-1]
            if i == 3:
                pred = preds[0].copy()[:, ::-1, ::-1]
            prediction_masks.append(pred)

        preds = np.average(prediction_masks, axis=0)
        return preds
            w = math.ceil(w / factor) * factor // 2
            #print(h, w)
            mask = np.zeros(shape=(h, w))

            image = cv2.resize(image, (w, h))
            image_ori = image
            # image=illum(image)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            aug = Compose([
                # PadIfNeeded(min_height=h, min_width=w, border_mode=cv2.BORDER_CONSTANT, value=0, p=1.0),  # padding到2的5次方的倍数
                Normalize(p=1)  # 归一化
            ])
            augmented = aug(image=image, mask=mask)
            image = augmented['image']
            image = img_to_tensor(image).unsqueeze(0).to(
                DEVICE
            )  # torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float().to(DEVICE)  # 图像转为tensor格式
            output = model(image)  # 预测
            seg_mask = (output[0].data.cpu().numpy().argmax(axis=0)).astype(
                np.uint8)
            t2 = time.time()
            print("time:", (t2 - t1))

            full_mask = np.zeros((h, w, 3))
            for mask_label, sub_color in enumerate(class_color):
                full_mask[seg_mask == mask_label, 0] = sub_color[2]
                full_mask[seg_mask == mask_label, 1] = sub_color[1]
                full_mask[seg_mask == mask_label, 2] = sub_color[0]
            # print(full_mask.max())
            # import matplotlib.pyplot as plt
            # plt.imshow(full_mask)
    def start_divide(self):
        class_color = [[0, 0, 0], [0, 255, 0], [0, 255, 255], [125, 255, 12]]
        t1 = time.time()
        # ********
        seg = "binary"  # 多类别分割,夹子为一类,铰链为一类,柄为一类

        if seg == "parts":
            model = parts_seg(in_channels=3, out_channels=4)
            # model_path = r"model_2_TDSNet.pt"  # 多类别分割模型地址
        elif seg == "binary":  # 二元分割,背景为一类手术器械为一类
            model = binary_seg(in_channels=3, out_channels=2)
            # model_path = r"model_0_TDSNet.pt"  # 二元分割模型地址
        else:
            model = r""
            model_path = r""

        model_path = self.model_path

        state = torch.load(str(model_path), map_location='cpu')
        state = {
            key.replace('module.', ''): value
            for key, value in state['model'].items()
        }
        model.load_state_dict(state)
        model.to(device)
        model.eval()
        # **********
        types = self.ui.type_combo.currentText()
        path = self.ui.data_path_text.toPlainText()  # 要分割的图像或者视频或者nii所在的文件夹地址
        path_save = self.ui.result_path_text.toPlainText()  # 要保存图像的地址
        names = file_name(path)  # path目录下所有文件名字
        factor = 2**5
        # ********

        if types == "image":
            for i, name in enumerate(names):
                t1 = time.time()
                path_single = os.path.join(path, name)
                image = cv2.imdecode(np.fromfile(path_single, dtype=np.uint8),
                                     -1)

                h, w, channel = image.shape

                h = math.ceil(
                    h / factor
                ) * factor // 2  # 向上取整,由于模型需要下采样5次图像会变成原来的2的5次方分之一,需要输入图像是2的5次方的倍数
                w = math.ceil(w / factor) * factor // 2
                # print(h, w)
                mask = np.zeros(shape=(h, w))

                image = cv2.resize(image, (w, h))
                image_ori = image
                # image=illum(image)
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                aug = Compose([
                    # PadIfNeeded(min_height=h, min_width=w, border_mode=cv2.BORDER_CONSTANT, value=0, p=1.0),  # padding到2的5次方的倍数
                    Normalize(p=1)  # 归一化
                ])
                augmented = aug(image=image, mask=mask)
                image = augmented['image']
                image = img_to_tensor(image).unsqueeze(0).to(
                    device
                )  # torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float().to(DEVICE)  # 图像转为tensor格式
                output = model(image)  # 预测
                seg_mask = (output[0].data.cpu().numpy().argmax(
                    axis=0)).astype(np.uint8)
                t2 = time.time()
                print("time:", (t2 - t1))

                full_mask = np.zeros((h, w, 3))
                for mask_label, sub_color in enumerate(class_color):
                    full_mask[seg_mask == mask_label, 0] = sub_color[2]
                    full_mask[seg_mask == mask_label, 1] = sub_color[1]
                    full_mask[seg_mask == mask_label, 2] = sub_color[0]
                # print(full_mask.max())
                # import matplotlib.pyplot as plt
                # plt.imshow(full_mask)
                # plt.show()

                seg = mask_overlay(image_ori, (full_mask > 0)).astype(np.uint8)
                # seg = mask_overlay((full_mask > 0)).astype(np.uint8)
                # cv2.imshow("seg",seg)
                # cv2.waitKey(0)
                cv2.imwrite(path_save + "/" + str(i).zfill(4) + ".png", seg)

            save_video(path_save, path_save, h, w,
                       self.aviname)  # 可以播放保存的视频展示分割结果

        elif types == "video":
            # 对视频进行分割
            splitFrames(path, path_save)
            #  调用图像分割的方法分割从视频中保存的图像

        elif types == "nii":
            # 对nii3维医学图像进行分割
            import nibabel as nib
            img = np.array(nib.load(path).get_data())
            pass
Exemple #12
0
from dataset import load_image
import torch
from generate_masks import get_model, img_transform
from functions import jaccard
import numpy as np
import matplotlib.pyplot as plt
from albumentations.pytorch.transforms import img_to_tensor

arrt = np.random.randn(500, 500)
tensor = img_to_tensor(arrt)
mean=(0.485, 0.456, 0.406)
std=(0.229, 0.224, 0.225)

#new_img = img - mean /std
#old img = 

model_path = 'pretrained/unet16_instruments_20/model_1.pt'
model = get_model(model_path, model_type='UNet16', problem_type='instruments')

img_l =  load_image('dataset/instrument_dataset_1/left_frames/frame000.png')
input_img_l = torch.unsqueeze(img_to_tensor(img_transform(p=1)(image=img_l)['image']), dim=0)
mask_l = model(input_img_l)

img_r =  load_image('dataset/instrument_dataset_1/right_frames/frame000.png')
input_img_r = torch.unsqueeze(img_to_tensor(img_transform(p=1)(image=img_r)['image']), dim=0)
mask_r = model(input_img_r)

mask = jaccard(mask_l, mask_r)


im_seg = mask.data[0].cpu().numpy()[0]