Exemple #1
0
    def get_morphology_features(self, dataframe=False, file_name=None):
        """
        Download morphology features for all cells with reconstructions in the database.

        Parameters
        ----------

        file_name: string
            File name to save/read the ephys features metadata as CSV.
            If file_name is None, the file_name will be pulled out of the
            manifest.  If caching is disabled, no file will be saved.
            Default is None.

        dataframe: boolean
            Return the output as a Pandas DataFrame.  If False, return
            a list of dictionaries.
        """

        file_name = self.get_cache_path(file_name,
                                        self.MORPHOLOGY_FEATURES_KEY)

        if self.cache:
            if dataframe:
                warnings.warn("dataframe argument is deprecated.")
                args = Cache.cache_csv_dataframe()
            else:
                args = Cache.cache_csv_json()
        else:
            args = Cache.nocache_json()

        args['strategy'] = 'lazy'
        args['path'] = file_name

        return self.api.get_morphology_features(**args)
Exemple #2
0
    def get_structure_tree(self, file_name=None, structure_graph_id=1):
        """
        Read the list of adult mouse structures and return an StructureTree 
        instance.

        Parameters
        ----------

        file_name: string
            File name to save/read the structures table.  If file_name is None,
            the file_name will be pulled out of the manifest.  If caching
            is disabled, no file will be saved. Default is None.
        structure_graph_id: int
            Build a tree using structure only from the identified structure graph.
        """
        
        file_name = self.get_cache_path(file_name, self.STRUCTURE_TREE_KEY)

        return OntologiesApi(self.api.api_url).get_structures_with_sets(
            strategy='lazy',
            path=file_name,
            pre=StructureTree.clean_structures,
            post=lambda x: StructureTree(StructureTree.clean_structures(x)), 
            structure_graph_ids=structure_graph_id,
            **Cache.cache_json())
def test_file_kwarg(nrrd_read, safe_mkdir, mca, cache, file_exists):
    with patch.object(mca, "retrieve_file_over_http") as mock_retrieve:

        @cacheable(reader=nrrd_read,
                   pathfinder=Cache.pathfinder(file_name_position=3,
                                               secondary_file_name_position=1,
                                               path_keyword='save_file_path'))
        def download_volumetric_data(data_path,
                                     file_name,
                                     voxel_resolution=None,
                                     save_file_path=None,
                                     release=None,
                                     coordinate_framework=None):
            url = mca.build_volumetric_data_download_url(
                data_path, file_name, voxel_resolution, release,
                coordinate_framework)

            mca.retrieve_file_over_http(url, save_file_path)

        with patch('os.path.exists',
                   Mock(name="os.path.exists",
                        return_value=file_exists)) as mkdir:
            nrrd_read.reset_mock()

            download_volumetric_data(MCA.AVERAGE_TEMPLATE,
                                     'annotation_10.nrrd',
                                     MCA.VOXEL_RESOLUTION_10_MICRONS,
                                     'volumetric.nrrd',
                                     MCA.CCF_2016,
                                     strategy='file',
                                     save_file_path='file.nrrd')

        assert not mock_retrieve.called, 'server should not have been called'
        assert not safe_mkdir.called, 'safe_mkdir should not have been called.'
        nrrd_read.assert_called_once_with('file.nrrd')
def test_file_download_server(nrrd_read, safe_mkdir, mca, cache, file_exists):
    with patch.object(mca, "retrieve_file_over_http") as mock_retrieve:

        @cacheable(reader=nrrd_read,
                   pathfinder=Cache.pathfinder(file_name_position=3,
                                               secondary_file_name_position=1))
        def download_volumetric_data(data_path,
                                     file_name,
                                     voxel_resolution=None,
                                     save_file_path=None,
                                     release=None,
                                     coordinate_framework=None):
            url = mca.build_volumetric_data_download_url(
                data_path, file_name, voxel_resolution, release,
                coordinate_framework)

            mca.retrieve_file_over_http(url, save_file_path)

        with patch('os.path.exists',
                   Mock(name="os.path.exists",
                        return_value=file_exists)) as mkdir:
            nrrd_read.reset_mock()

            download_volumetric_data(MCA.AVERAGE_TEMPLATE,
                                     'annotation_10.nrrd',
                                     MCA.VOXEL_RESOLUTION_10_MICRONS,
                                     'volumetric.nrrd',
                                     MCA.CCF_2016,
                                     strategy='create')

        mock_retrieve.assert_called_once_with(
            'http://download.alleninstitute.org/informatics-archive/annotation/ccf_2016/mouse_ccf/average_template/annotation_10.nrrd',
            'volumetric.nrrd')
        assert not safe_mkdir.called, 'safe_mkdir should not have been called.'
        nrrd_read.assert_called_once_with('volumetric.nrrd')
Exemple #5
0
    def _get_stimulus_mappings(self, file_name=None):
        """ Returns a mapping of which metrics are related to which stimuli. Internal use only. """

        file_name = self.get_cache_path(file_name, self.STIMULUS_MAPPINGS_KEY)

        mappings = self.api.get_stimulus_mappings(path=file_name,
                                                  strategy='lazy',
                                                  **Cache.cache_json())

        return mappings
    def get_affine_parameters(self,
                              section_data_set_id,
                              direction='trv',
                              file_name=None):
        ''' Extract the parameters of the 3D affine tranformation mapping this section data set's image-space stack to 
        CCF-space (or vice-versa).

        Parameters
        ----------
        section_data_set_id : int
            download the parameters for this data set.
        direction : str, optional
            Valid options are:
                trv : "transform from reference to volume". Maps CCF points to image space points. If you are 
                    resampling data into CCF, this is the direction you want.
                tvr : "transform from volume to reference". Maps image space points to CCF points.
        file_name : str
            If provided, store the downloaded file here.
 
        Returns
        -------
        alignment : numpy.ndarray
            4 X 3 matrix. In order to transform a point [X_1, X_2, X_3] run 
                np.dot([X_1, X_2, X_3, 1], alignment). In 
            to build a SimpleITK affine transform run:
                transform = sitk.AffineTransform(3)
                transform.SetParameters(alignment.flatten())

        '''

        if not direction in ('trv', 'tvr'):
            raise ArgumentError(
                'invalid direction: {}. direction must be one of tvr, trv'.
                format(direction))

        file_name = self.get_cache_path(file_name, self.ALIGNMENT3D_KEY)

        raw_alignment = self.api.download_alignment3d(
            strategy='lazy',
            path=file_name,
            section_data_set_id=section_data_set_id,
            **Cache.cache_json())

        alignment_re = re.compile('{}_(?P<index>\d+)'.format(direction))
        alignment = np.zeros((4, 3), dtype=float)

        for entry, value in raw_alignment.items():
            match = alignment_re.match(entry)
            if match is not None:
                alignment.flat[int(match.group('index'))] = value

        return alignment
Exemple #7
0
def test_cacheable_no_cache_csv(read_csv, ju_read_url_get, ju_read, ju_write):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    df = get_hemispheres(path='/xyz/abc/example.csv',
                         strategy='file',
                         **Cache.cache_csv())

    assert df.loc[:, 'whatever'][0]

    assert not ju_read_url_get.called
    read_csv.assert_called_once_with('/xyz/abc/example.csv', parse_dates=True)
    assert not ju_write.called, 'json write should not have been called'
    assert not ju_read.called, 'json read should not have been called'
Exemple #8
0
    def get_cells(self,
                  file_name=None,
                  require_morphology=False,
                  require_reconstruction=False,
                  reporter_status=None,
                  species=None,
                  simple=True):
        """
        Download metadata for all cells in the database and optionally return a
        subset filtered by whether or not they have a morphology or reconstruction.

        Parameters
        ----------

        file_name: string
            File name to save/read the cell metadata as JSON.  If file_name is None,
            the file_name will be pulled out of the manifest.  If caching
            is disabled, no file will be saved. Default is None.

        require_morphology: boolean
            Filter out cells that have no morphological images.

        require_reconstruction: boolean
            Filter out cells that have no morphological reconstructions.

        reporter_status: list
            Filter for cells that have one or more cell reporter statuses.

        species: list
            Filter for cells that belong to one or more species.  If None, return all.
            Must be one of [ CellTypesApi.MOUSE, CellTypesApi.HUMAN ].
        """

        file_name = self.get_cache_path(file_name, self.CELLS_KEY)

        cells = self.api.list_cells_api(path=file_name,
                                        strategy='lazy',
                                        **Cache.cache_json())

        if isinstance(reporter_status, string_types):
            reporter_status = [reporter_status]

        # filter the cells on the way out
        cells = self.api.filter_cells_api(cells, require_morphology,
                                          require_reconstruction,
                                          reporter_status, species, simple)

        return cells
Exemple #9
0
def test_cacheable_no_save_dataframe(to_csv, read_csv, ju_read_url_get,
                                     ju_read, ju_write):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    df = get_hemispheres(**Cache.nocache_dataframe())

    assert df.loc[:, 'whatever'][0]

    ju_read_url_get.assert_called_once_with(
        'http://api.brain-map.org/api/v2/data/query.json?q=model::Hemisphere')
    assert not to_csv.called, 'to_csv should not have been called'
    assert not read_csv.called, 'read_csv should not have been called'
    assert not ju_write.called, 'json write should not have been called'
    assert not ju_read.called, 'json read should not have been called'
Exemple #10
0
def test_cacheable_json(read_csv, mkdir, ju_read_url_get, ju_read, ju_write):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    df = get_hemispheres(path='/xyz/abc/example.json',
                         strategy='create',
                         **Cache.cache_json())

    assert 'whatever' in df[0]

    ju_read_url_get.assert_called_once_with(
        'http://api.brain-map.org/api/v2/data/query.json?q=model::Hemisphere')
    assert not read_csv.called, 'read_csv should not have been called'
    ju_write.assert_called_once_with('/xyz/abc/example.json', _msg)
    ju_read.assert_called_once_with('/xyz/abc/example.json')
Exemple #11
0
def test_cacheable_lazy_csv_file_exists(read_csv, ju_read_url_get, ju_read,
                                        ju_write):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    with patch('os.path.exists', MagicMock(return_value=True)) as ope:
        df = get_hemispheres(path='/xyz/abc/example.csv',
                             strategy='lazy',
                             **Cache.cache_csv())

    assert df.loc[:, 'whatever'][0]

    assert not ju_read_url_get.called
    read_csv.assert_called_once_with('/xyz/abc/example.csv', parse_dates=True)
    assert not ju_write.called, 'json write should not have been called'
    assert not ju_read.called, 'json read should not have been called'
Exemple #12
0
def test_excpt(mkdir, ju_read_url_get, ju_read, ju_write):
    @cacheable()
    def get_hemispheres_excpt():
        return RmaApi().model_query(model='Hemisphere', excpt=['symbol'])

    df = get_hemispheres_excpt(path='/xyz/abc/example.json',
                               strategy='create',
                               **Cache.cache_json())

    assert 'whatever' in df[0]

    ju_read_url_get.assert_called_once_with(
        'http://api.brain-map.org/api/v2/data/query.json?q=model::Hemisphere,rma::options%5Bexcept$eqsymbol%5D'
    )
    ju_write.assert_called_once_with('/xyz/abc/example.json', _msg)
    ju_read.assert_called_once_with('/xyz/abc/example.json')
    mkdir.assert_called_once_with('/xyz/abc')
Exemple #13
0
def test_cacheable_json_dataframe(mkdir, ju_read_url_get, ju_read, ju_write,
                                  read_csv, mock_read_json):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    df = get_hemispheres(path='/xyz/abc/example.json',
                         strategy='create',
                         **Cache.cache_json_dataframe())

    assert df.loc[:, 'whatever'][0]

    ju_read_url_get.assert_called_once_with(
        'http://api.brain-map.org/api/v2/data/query.json?q=model::Hemisphere')
    assert not read_csv.called, 'read_csv should not have been called'
    mock_read_json.assert_called_once_with('/xyz/abc/example.json',
                                           orient='records')
    ju_write.assert_called_once_with('/xyz/abc/example.json', _msg)
    assert not ju_read.called, 'json read should not have been called'
    mkdir.assert_called_once_with('/xyz/abc')
Exemple #14
0
    def get_ephys_sweeps(self, specimen_id, file_name=None):
        """
        Download sweep metadata for a single cell specimen.

        Parameters
        ----------

        specimen_id: int
             ID of a cell.
        """

        file_name = self.get_cache_path(file_name, self.EPHYS_SWEEPS_KEY,
                                        specimen_id)

        sweeps = self.api.get_ephys_sweeps(specimen_id,
                                           strategy='lazy',
                                           path=file_name,
                                           **Cache.cache_json())

        return sweeps
Exemple #15
0
def test_cacheable_lazy_csv_no_file(mkdir, dictwriter, ju_read_url_get,
                                    ju_read, ju_write, read_csv):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    with patch('os.path.exists', MagicMock(return_value=False)) as ope:
        with patch(builtins.__name__ + '.open', mock_open(),
                   create=True) as open_mock:
            open_mock.return_value.write = MagicMock()
            df = get_hemispheres(path='/xyz/abc/example.csv',
                                 strategy='lazy',
                                 **Cache.cache_csv())

    assert df.loc[:, 'whatever'][0]

    ju_read_url_get.assert_called_once_with(
        'http://api.brain-map.org/api/v2/data/query.json?q=model::Hemisphere')
    open_mock.assert_called_once_with('/xyz/abc/example.csv', 'w')
    dictwriter.return_value.writerow.assert_called()
    read_csv.assert_called_once_with('/xyz/abc/example.csv', parse_dates=True)
    assert not ju_write.called, 'json write should not have been called'
    assert not ju_read.called, 'json read should not have been called'
Exemple #16
0
def test_cacheable_csv_dataframe(read_csv, dictwriter, ju_read_url_get,
                                 ju_read, ju_write):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    with patch('allensdk.config.manifest.Manifest.safe_mkdir') as mkdir:
        with patch(builtins.__name__ + '.open', mock_open(),
                   create=True) as open_mock:
            open_mock.return_value.write = MagicMock()
            df = get_hemispheres(path='/xyz/abc/example.txt',
                                 strategy='create',
                                 **Cache.cache_csv_dataframe())

    assert df.loc[:, 'whatever'][0]

    ju_read_url_get.assert_called_once_with(
        'http://api.brain-map.org/api/v2/data/query.json?q=model::Hemisphere')
    read_csv.assert_called_once_with('/xyz/abc/example.txt', parse_dates=True)
    assert not ju_write.called, 'write should not have been called'
    assert not ju_read.called, 'read should not have been called'
    mkdir.assert_called_once_with('/xyz/abc')
    open_mock.assert_called_once_with('/xyz/abc/example.txt', 'w')
Exemple #17
0
def test_cacheable_csv_json(mkdir, dictwriter, ju_read_url_get, ju_read,
                            ju_write, read_csv, mock_read_json):
    @cacheable()
    def get_hemispheres():
        return RmaApi().model_query(model='Hemisphere')

    with patch(builtins.__name__ + '.open', mock_open(),
               create=True) as open_mock:
        open_mock.return_value.write = MagicMock()
        df = get_hemispheres(path='/xyz/example.csv',
                             strategy='create',
                             **Cache.cache_csv_json())

    assert 'whatever' in df[0]

    ju_read_url_get.assert_called_once_with(
        'http://api.brain-map.org/api/v2/data/query.json?q=model::Hemisphere')
    read_csv.assert_called_once_with('/xyz/example.csv', parse_dates=True)
    dictwriter.return_value.writerow.assert_called()
    assert not mock_read_json.called, 'pj.read_json should not have been called'
    assert not ju_write.called, 'ju.write should not have been called'
    assert not ju_read.called, 'json read should not have been called'
    mkdir.assert_called_once_with('/xyz')
    open_mock.assert_called_once_with('/xyz/example.csv', 'w')
summary_structures[['id', 'parent_structure_id',
                    'acronym']].to_csv('summary_structures.csv',
                                       index_label='structure_id')
reread = pd.read_csv('summary_structures.csv')

#===============================================================================
# example 10
#===============================================================================

for id, name, parent_structure_id in summary_structures[[
        'name', 'parent_structure_id'
]].itertuples():
    print("%d %s %d" % (id, name, parent_structure_id))

#===============================================================================
# example 11
#===============================================================================

from allensdk.api.warehouse_cache.cache import Cache

cache_writer = Cache()
do_cache = True
structures_from_api = \
    cache_writer.wrap(rma.model_query,
                        path='summary.csv',
                        cache=do_cache,
                        model='Structure',
                        criteria='[graph_id$eq1]',
                        num_rows='all')
class ReferenceSpaceApi(RmaApi):

    AVERAGE_TEMPLATE = 'average_template'
    ARA_NISSL = 'ara_nissl'
    MOUSE_2011 = 'annotation/mouse_2011'
    DEVMOUSE_2012 = 'annotation/devmouse_2012'
    CCF_2015 = 'annotation/ccf_2015'
    CCF_2016 = 'annotation/ccf_2016'
    CCF_2017 = 'annotation/ccf_2017'
    CCF_VERSION_DEFAULT = CCF_2017

    VOXEL_RESOLUTION_10_MICRONS = 10
    VOXEL_RESOLUTION_25_MICRONS = 25
    VOXEL_RESOLUTION_50_MICRONS = 50
    VOXEL_RESOLUTION_100_MICRONS = 100

    def __init__(self, base_uri=None):
        super(ReferenceSpaceApi, self).__init__(base_uri=base_uri)

    @cacheable(strategy='create',
               reader=nrrd.read,
               pathfinder=Cache.pathfinder(file_name_position=3,
                                           path_keyword='file_name'))
    def download_annotation_volume(self, ccf_version, resolution, file_name):
        '''
        Download the annotation volume at a particular resolution.

        Parameters
        ----------
        ccf_version: string
            Which reference space version to download. Defaults to "annotation/ccf_2017"
        resolution: int
            Desired resolution to download in microns.
            Must be 10, 25, 50, or 100.
        file_name: string
            Where to save the annotation volume.
        
        Note: the parameters must be used as positional parameters, not keywords
        '''

        if ccf_version is None:
            ccf_version = ReferenceSpaceApi.CCF_VERSION_DEFAULT

        self.download_volumetric_data(ccf_version,
                                      'annotation_%d.nrrd' % resolution,
                                      save_file_path=file_name)

    @cacheable(strategy='create',
               reader=sitk_utilities.read_ndarray_with_sitk,
               pathfinder=Cache.pathfinder(file_name_position=3,
                                           path_keyword='file_name'))
    def download_mouse_atlas_volume(self, age, volume_type, file_name):
        '''Download a reference volume (annotation, grid annotation, atlas volume) 
        from the mouse brain atlas project

        Parameters
        ----------
        age : str
            Specify a mouse age for which to download the reference volume
        volume_type : str
            Specify the type of volume to download
        file_name : str
            Specify the path to the downloaded volume
        '''

        remote_file_name = '{}_{}.zip'.format(age, volume_type)
        url = '/'.join([
            self.informatics_archive_endpoint, 'current-release',
            'mouse_annotation', remote_file_name
        ])

        self.retrieve_file_over_http(url, file_name, zipped=True)

    @cacheable(strategy='create',
               reader=nrrd.read,
               pathfinder=Cache.pathfinder(file_name_position=2,
                                           path_keyword='file_name'))
    def download_template_volume(self, resolution, file_name):
        '''
        Download the registration template volume at a particular resolution.

        Parameters
        ----------

        resolution: int
            Desired resolution to download in microns.  Must be 10, 25, 50, or 100.

        file_name: string
            Where to save the registration template volume.
        '''
        self.download_volumetric_data(ReferenceSpaceApi.AVERAGE_TEMPLATE,
                                      'average_template_%d.nrrd' % resolution,
                                      save_file_path=file_name)

    @cacheable(strategy='create',
               reader=nrrd.read,
               pathfinder=Cache.pathfinder(file_name_position=4,
                                           path_keyword='file_name'))
    def download_structure_mask(self, structure_id, ccf_version, resolution,
                                file_name):
        '''Download an indicator mask for a specific structure.

        Parameters
        ----------
        structure_id : int
            Unique identifier for the annotated structure
        ccf_version : string
            Which reference space version to download. Defaults to "annotation/ccf_2017"
        resolution : int
            Desired resolution to download in microns.  Must be 10, 25, 50, or 100.
        file_name : string
             Where to save the downloaded mask.

        '''

        if ccf_version is None:
            ccf_version = ReferenceSpaceApi.CCF_VERSION_DEFAULT

        structure_mask_dir = 'structure_masks_{0}'.format(resolution)
        data_path = '{0}/{1}/{2}'.format(ccf_version, 'structure_masks',
                                         structure_mask_dir)
        remote_file_name = 'structure_{0}.nrrd'.format(structure_id)

        try:
            self.download_volumetric_data(data_path,
                                          remote_file_name,
                                          save_file_path=file_name)
        except Exception as e:
            self._file_download_log.error(
                '''We weren't able to download a structure mask for structure {0}. 
                                             You can instead build the mask locally using 
                                             ReferenceSpace.many_structure_masks'''
            )
            raise

    @cacheable(strategy='create',
               reader=read_obj,
               pathfinder=Cache.pathfinder(file_name_position=3,
                                           path_keyword='file_name'))
    def download_structure_mesh(self, structure_id, ccf_version, file_name):
        '''Download a Wavefront obj file containing a triangulated 3d mesh built 
        from an annotated structure.

        Parameters
        ----------
        structure_id : int
            Unique identifier for the annotated structure
        ccf_version : string
            Which reference space version to download. Defaults to "annotation/ccf_2017"
        file_name : string
             Where to save the downloaded mask.

        '''

        if ccf_version is None:
            ccf_version = ReferenceSpaceApi.CCF_VERSION_DEFAULT

        data_path = '{0}/{1}'.format(ccf_version, 'structure_meshes')
        remote_file_name = '{0}.obj'.format(structure_id)

        try:
            self.download_volumetric_data(data_path,
                                          remote_file_name,
                                          save_file_path=file_name)
        except Exception as e:
            self._file_download_log.error(
                'unable to download a structure mesh for structure {0}.'.
                format(structure_id))
            raise

    def build_volumetric_data_download_url(self,
                                           data_path,
                                           file_name,
                                           voxel_resolution=None,
                                           release=None,
                                           coordinate_framework=None):
        '''Construct url to download 3D reference model in NRRD format.

        Parameters
        ----------
        data_path : string
            'average_template', 'ara_nissl', 'annotation/ccf_{year}', 
            'annotation/mouse_2011', or 'annotation/devmouse_2012'
        voxel_resolution : int
            10, 25, 50 or 100
        coordinate_framework : string
            'mouse_ccf' (default) or 'mouse_annotation'

        Notes
        -----
        See: `3-D Reference Models <http://help.brain-map.org/display/mouseconnectivity/API#API-3DReferenceModels>`_
        for additional documentation.
        '''

        if voxel_resolution is None:
            voxel_resolution = ReferenceSpaceApi.VOXEL_RESOLUTION_10_MICRONS

        if release is None:
            release = 'current-release'

        if coordinate_framework is None:
            coordinate_framework = 'mouse_ccf'

        url = ''.join([
            self.informatics_archive_endpoint,
            '/%s/%s/' % (release, coordinate_framework), data_path, '/',
            file_name
        ])

        return url

    def download_volumetric_data(self,
                                 data_path,
                                 file_name,
                                 voxel_resolution=None,
                                 save_file_path=None,
                                 release=None,
                                 coordinate_framework=None):
        '''Download 3D reference model in NRRD format.

        Parameters
        ----------
        data_path : string
            'average_template', 'ara_nissl', 'annotation/ccf_{year}', 
            'annotation/mouse_2011', or 'annotation/devmouse_2012'
        file_name : string
            server-side file name. 'annotation_10.nrrd' for example.
        voxel_resolution : int
            10, 25, 50 or 100
        coordinate_framework : string
            'mouse_ccf' (default) or 'mouse_annotation'

        Notes
        -----
        See: `3-D Reference Models <http://help.brain-map.org/display/mouseconnectivity/API#API-3DReferenceModels>`_
        for additional documentation.
        '''
        url = self.build_volumetric_data_download_url(data_path, file_name,
                                                      voxel_resolution,
                                                      release,
                                                      coordinate_framework)

        if save_file_path is None:
            save_file_path = file_name

        if save_file_path is None:
            save_file_path = 'volumetric_data.nrrd'

        self.retrieve_file_over_http(url, save_file_path)
Exemple #20
0
class MouseAtlasApi(ReferenceSpaceApi, GridDataApi):
    ''' Downloads Mouse Brain Atlas grid data, reference volumes, and metadata.
    '''

    MOUSE_ATLAS_PRODUCTS = (1, )
    DEVMOUSE_ATLAS_PRODUCTS = (3, )
    MOUSE_ORGANISM = (2, )
    HUMAN_ORGANISM = (1, )

    @cacheable()
    @pageable(num_rows=2000, total_rows='all')
    def get_section_data_sets(self, gene_ids=None, product_ids=None, **kwargs):
        ''' Download a list of section data sets (experiments) from the Mouse Brain
        Atlas project.

        Parameters
        ----------
        gene_ids : list of int, optional
            Filter results based on the genes whose expression was characterized 
            in each experiment. Default is all.
        product_ids : list of int, optional
            Filter results to a subset of products. Default is the Mouse Brain Atlas.

        Returns
        -------
        list of dict : 
            Each element is a section data set record, with one or more gene 
            records nested in a list. 

        '''

        if product_ids is None:
            product_ids = list(self.MOUSE_ATLAS_PRODUCTS)
        criteria = 'products[id$in{}]'.format(','.join(map(str, product_ids)))

        if gene_ids is not None:
            criteria += ',genes[id$in{}]'.format(','.join(map(str, gene_ids)))

        order = kwargs.pop('order', ['\'id\''])

        return self.model_query(model='SectionDataSet',
                                criteria=criteria,
                                include='genes',
                                order=order,
                                **kwargs)

    @cacheable()
    @pageable(num_rows=2000, total_rows='all')
    def get_genes(self, organism_ids=None, chromosome_ids=None, **kwargs):
        ''' Download a list of genes

        Parameters
        ----------
        organism_ids : list of int, optional
            Filter genes to those appearing in these organisms. Defaults to mouse (2).
        chromosome_ids : list of int, optional
            Filter genes to those appearing on these chromosomes. Defaults to all.

        Returns
        -------
        list of dict:
            Each element is a gene record, with a nested chromosome record (also a dict).

        '''

        if organism_ids is None:
            organism_ids = list(self.MOUSE_ORGANISM)
        criteria = '[organism_id$in{}]'.format(','.join(map(str,
                                                            organism_ids)))

        if chromosome_ids is not None:
            criteria += ',[chromosome_id$in{}]'.format(','.join(
                map(str, chromosome_ids)))

        order = kwargs.pop('order', ['\'id\''])

        return self.model_query(model='Gene',
                                criteria=criteria,
                                include='chromosome',
                                order=order,
                                **kwargs)

    @cacheable(strategy='create',
               reader=sitk_utilities.read_ndarray_with_sitk,
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_expression_density(self, path, experiment_id):
        self.download_gene_expression_grid_data(experiment_id,
                                                GridDataApi.DENSITY, path)

    @cacheable(strategy='create',
               reader=sitk_utilities.read_ndarray_with_sitk,
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_expression_energy(self, path, experiment_id):
        self.download_gene_expression_grid_data(experiment_id,
                                                GridDataApi.ENERGY, path)

    @cacheable(strategy='create',
               reader=sitk_utilities.read_ndarray_with_sitk,
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_expression_intensity(self, path, experiment_id):
        self.download_gene_expression_grid_data(experiment_id,
                                                GridDataApi.INTENSITY, path)
class BrainObservatoryApi(RmaTemplate):
    _log = logging.getLogger('allensdk.api.queries.brain_observatory_api')

    NWB_FILE_TYPE = 'NWBOphys'
    OPHYS_ANALYSIS_FILE_TYPE = 'OphysExperimentCellRoiMetricsFile'
    OPHYS_EVENTS_FILE_TYPE = 'ObservatoryEventsFile'
    CELL_MAPPING_ID = 590985414

    rma_templates = \
        {"brain_observatory_queries": [
            {'name': 'list_isi_experiments',
             'description': 'see name',
             'model': 'IsiExperiment',
             'num_rows': 'all',
             'count': False,
             'criteria_params': []
             },
            {'name': 'isi_experiment_by_ids',
             'description': 'see name',
             'model': 'IsiExperiment',
             'criteria': '[id$in{{ isi_experiment_ids }}]',
             'include': 'experiment_container(ophys_experiments,targeted_structure)',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['isi_experiment_ids']
             },
            {'name': 'ophys_experiment_by_ids',
             'description': 'see name',
             'model': 'OphysExperiment',
             'criteria': '{% if ophys_experiment_ids is defined %}[id$in{{ ophys_experiment_ids }}]{%endif%}',
             'include': 'experiment_container,well_known_files(well_known_file_type),targeted_structure,specimen(donor(age,transgenic_lines))',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['ophys_experiment_ids']
             },
            {'name': 'ophys_experiment_data',
             'description': 'see name',
             'model': 'WellKnownFile',
             'criteria': '[attachable_id$eq{{ ophys_experiment_id }}],well_known_file_type[name$eq%s]' % NWB_FILE_TYPE,
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['ophys_experiment_id']
             },
            {'name': 'ophys_analysis_file',
             'description': 'see name',
             'model': 'WellKnownFile',
             'criteria': '[attachable_id$eq{{ ophys_experiment_id }}],well_known_file_type[name$eq%s]' % OPHYS_ANALYSIS_FILE_TYPE,
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['ophys_experiment_id']
             },
            {'name': 'ophys_events_file',
             'description': 'see name',
             'model': 'WellKnownFile',
             'criteria': '[attachable_id$eq{{ ophys_experiment_id }}],well_known_file_type[name$eq%s]' % OPHYS_EVENTS_FILE_TYPE,
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['ophys_experiment_id']
             },
            {'name': 'column_definitions',
             'description': 'see name',
             'model': 'ApiColumnDefinition',
             'criteria': '[api_class_name$eq{{ api_class_name }}]',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['api_class_name']
             },
            {'name': 'column_definition_class_names',
             'description': 'see name',
             'model': 'ApiColumnDefinition',
             'only': ['api_class_name'],
             'num_rows': 'all',
             'count': False,
             },
            {'name': 'stimulus_mapping',
             'description': 'see name',
             'model': 'ApiCamStimulusMapping',
             'criteria': '{% if stimulus_mapping_ids is defined %}[id$in{{ stimulus_mapping_ids }}]{%endif%}',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['stimulus_mapping_ids']
             },
            {'name': 'experiment_container',
             'description': 'see name',
             'model': 'ExperimentContainer',
             'criteria': '{% if experiment_container_ids is defined %}[id$in{{ experiment_container_ids }}]{%endif%}',
             'include': 'ophys_experiments,isi_experiment,specimen(donor(conditions,age,transgenic_lines)),targeted_structure',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['experiment_container_ids']
             },
            {'name': 'experiment_container_metric',
             'description': 'see name',
             'model': 'ApiCamExperimentContainerMetric',
             'criteria': '{% if experiment_container_metric_ids is defined %}[id$in{{ experiment_container_metric_ids }}]{%endif%}',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['experiment_container_metric_ids']
             },
            {'name': 'cell_metric',
             'description': 'see name',
             'model': 'ApiCamCellMetric',
             'criteria': '{% if cell_specimen_ids is defined %}[cell_specimen_id$in{{ cell_specimen_ids }}]{%endif%}',
             'criteria_params': ['cell_specimen_ids']
             },
            {'name': 'cell_specimen_id_mapping_table',
             'description': 'see name',
             'model': 'WellKnownFile',
             'criteria': '[id$eq{{ mapping_table_id }}],well_known_file_type[name$eqOphysCellSpecimenIdMapping]',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['mapping_table_id']
             },
            {'name': 'eye_gaze_mapping_file',
             'description': 'h5 file containing mouse eye gaze mapped onto screen coordinates (as well as pupil and eye sizes)',
             'model': 'WellKnownFile',
             'criteria': '[attachable_id$eq{{ ophys_session_id }}],well_known_file_type[name$eqEyeDlcScreenMapping]',
             'num_rows': 'all',
             'count': False,
             'criteria_params': ['ophys_session_id']
             },
            # NOTE: 'all_eye_mapping_files' query is for facilitating an ugly
            # hack to get around lack of relationship between experiment id
            # and session id in current warehouse. This should be removed when
            # the relationship is added.
            {'name': 'all_eye_mapping_files',
             'description': 'Get a list of dictionaries for all eye mapping wkfs',
             'model': 'WellKnownFile',
             'criteria': 'well_known_file_type[name$eqEyeDlcScreenMapping]',
             'num_rows': 'all',
             'count': False
             }
        ]}

    _QUERY_TEMPLATES = {
        "=": '({0} == {1})',
        "<": '({0} < {1})',
        ">": '({0} > {1})',
        "<=": '({0} <= {1})',
        ">=": '({0} >= {1})',
        "between": '({0} >= {1}) and ({0} <= {2})',
        "in": '({0} == {1})',
        "is": '({0} == {1})'
    }

    def __init__(self, base_uri=None, datacube_uri=None):
        super(BrainObservatoryApi, self).__init__(base_uri,
                                                  query_manifest=BrainObservatoryApi.rma_templates)

        self.datacube_uri = datacube_uri

    @cacheable()
    def get_ophys_experiments(self, ophys_experiment_ids=None):
        ''' Get OPhys Experiments by id

        Parameters
        ----------
        ophys_experiment_ids : integer or list of integers, optional
            only select specific experiments.

        Returns
        -------
        dict : ophys experiment metadata
        '''
        data = self.template_query('brain_observatory_queries',
                                   'ophys_experiment_by_ids',
                                   ophys_experiment_ids=ophys_experiment_ids)

        return data

    def get_isi_experiments(self, isi_experiment_ids=None):
        ''' Get ISI Experiments by id

        Parameters
        ----------
        isi_experiment_ids : integer or list of integers, optional
            only select specific experiments.

        Returns
        -------
        dict : isi experiment metadata
        '''
        data = self.template_query('brain_observatory_queries',
                                   'isi_experiment_by_ids',
                                   isi_experiment_ids=isi_experiment_ids)

        return data

    def list_isi_experiments(self, isi_ids=None):
        '''List ISI experiments available through the Allen Institute API

        Parameters
        ----------
        neuronal_model_ids : integer or list of integers, optional
            only select specific isi experiments.

        Returns
        -------
        dict : neuronal model metadata
        '''
        data = self.template_query('brain_observatory_queries',
                                   'list_isi_experiments')

        return data

    def list_column_definition_class_names(self):
        ''' Get column definitions

        Parameters
        ----------

        Returns
        -------
        list : api class name strings
        '''
        data = self.template_query('brain_observatory_queries',
                                   'column_definition_class_names')

        names = list(set([n['api_class_name'] for n in data]))

        return names

    def get_column_definitions(self, api_class_name=None):
        ''' Get column definitions

        Parameters
        ----------
        api_class_names : string or list of strings, optional
            only select specific column definition records.

        Returns
        -------
        dict : column definition metadata
        '''
        data = self.template_query('brain_observatory_queries',
                                   'column_definitions',
                                   api_class_name=api_class_name)

        return data

    @cacheable()
    def get_stimulus_mappings(self, stimulus_mapping_ids=None):
        ''' Get stimulus mappings by id

        Parameters
        ----------
        stimulus_mapping_ids : integer or list of integers, optional
            only select specific stimulus mapping records.

        Returns
        -------
        dict : stimulus mapping metadata
        '''
        data = self.template_query('brain_observatory_queries',
                                   'stimulus_mapping',
                                   stimulus_mapping_ids=stimulus_mapping_ids)

        return data

    @cacheable()
    @pageable(num_rows=2000, total_rows='all')
    def get_cell_metrics(self, cell_specimen_ids=None, *args, **kwargs):
        ''' Get cell metrics by id

        Parameters
        ----------
        cell_metrics_ids : integer or list of integers, optional
            only select specific cell metric records.

        Returns
        -------
        dict : cell metric metadata
        '''

        order = kwargs.pop('order', ['\'cell_specimen_id\''])

        data = self.template_query('brain_observatory_queries',
                                   'cell_metric',
                                   cell_specimen_ids=cell_specimen_ids,
                                   order=order,
                                   *args,
                                   **kwargs)

        return data

    @cacheable()
    def get_experiment_containers(self, experiment_container_ids=None):
        ''' Get experiment container by id

        Parameters
        ----------
        experiment_container_ids : integer or list of integers, optional
            only select specific experiment containers.

        Returns
        -------
        dict : experiment container metadata
        '''
        data = self.template_query('brain_observatory_queries',
                                   'experiment_container',
                                   experiment_container_ids=experiment_container_ids)

        return data

    def get_experiment_container_metrics(self, experiment_container_metric_ids=None):
        ''' Get experiment container metrics by id

        Parameters
        ----------
        isi_experiment_ids : integer or list of integers, optional
            only select specific experiments.

        Returns
        -------
        dict : isi experiment metadata
        '''
        data = self.template_query('brain_observatory_queries',
                                   'experiment_container_metric',
                                   experiment_container_metric_ids=experiment_container_metric_ids)

        return data

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=2,
                                           path_keyword='file_name'))
    def save_ophys_experiment_data(self, ophys_experiment_id, file_name):
        data = self.template_query('brain_observatory_queries',
                                   'ophys_experiment_data',
                                   ophys_experiment_id=ophys_experiment_id)

        try:
            file_url = data[0]['download_link']
        except Exception as _:
            raise Exception("ophys experiment %d has no data file" %
                            ophys_experiment_id)

        self._log.warning(
            "Downloading ophys_experiment %d NWB. This can take some time." % ophys_experiment_id)

        self.retrieve_file_over_http(self.api_url + file_url, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=2,
                                           path_keyword='file_name'))
    def save_ophys_experiment_analysis_data(self, ophys_experiment_id, file_name):

        data = self.template_query('brain_observatory_queries',
                                   'ophys_analysis_file',
                                   ophys_experiment_id=ophys_experiment_id)

        try:
            file_url = data[0]['download_link']
        except Exception as _:
            raise Exception("ophys experiment %d has no %s analysis file" %
                            (ophys_experiment_id, ))

        self._log.warning(
            "Downloading ophys_experiment %d analysis file. This can take some time." % (ophys_experiment_id, ))

        self.retrieve_file_over_http(self.api_url + file_url, file_name)


    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=2,
                                           path_keyword='file_name'))
    def save_ophys_experiment_event_data(self, ophys_experiment_id, file_name):
        data = self.template_query('brain_observatory_queries',
                                   'ophys_events_file',
                                   ophys_experiment_id=ophys_experiment_id)
        try:
            file_url = data[0]['download_link']
        except Exception:
            raise Exception("ophys experiment %d has no events file" %
                            ophys_experiment_id)
        self._log.warning(
            "Downloading ophys_experiment %d events file. This can take some time." % ophys_experiment_id)

        self.retrieve_file_over_http(self.api_url + file_url, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=3,
                                           path_keyword='file_name'))
    def save_ophys_experiment_eye_gaze_data(self,
                                            ophys_experiment_id: int,
                                            ophys_session_id: int,
                                            file_name: str):
        data = self.template_query('brain_observatory_queries',
                                   'eye_gaze_mapping_file',
                                   ophys_session_id=ophys_session_id)

        experiment_session_string = f"ophys_experiment '{ophys_experiment_id}' (session '{ophys_session_id}')"

        try:
            file_url = data[0]['download_link']
        except Exception:
            raise Exception(f"{experiment_session_string} has no eye gaze mapping file")
        self._log.warning(
            f"Downloading {experiment_session_string} gaze mapping file. This can take some time."
        )

        self.retrieve_file_over_http(self.api_url + file_url, file_name)

    def filter_experiments_and_containers(self, objs,
                                          ids=None,
                                          targeted_structures=None,
                                          imaging_depths=None,
                                          cre_lines=None,
                                          reporter_lines=None,
                                          transgenic_lines=None,
                                          include_failed=False):

        if not include_failed:
            objs = [o for o in objs if not o.get('failed', False)]

        if ids is not None:
            objs = [o for o in objs if o['id'] in ids]

        if targeted_structures is not None:
            objs = [o for o in objs if o[
                'targeted_structure']['acronym'] in targeted_structures]

        if imaging_depths is not None:
            objs = [o for o in objs if o[
                'imaging_depth'] in imaging_depths]

        if cre_lines is not None:
            tls = [ tl.lower() for tl in cre_lines ]
            obj_tls = [ find_specimen_cre_line(o['specimen']) for o in objs ]
            obj_tls = [ o.lower() if o else None for o in obj_tls ]
            objs = [o for i,o in enumerate(objs) if obj_tls[i] in tls]

        if reporter_lines is not None:
            tls = [ tl.lower() for tl in reporter_lines ]
            obj_tls = [ find_specimen_reporter_line(o['specimen']) for o in objs ]
            obj_tls = [ o.lower() if o else None for o in obj_tls ]
            objs = [o for i,o in enumerate(objs) if obj_tls[i] in tls]
            
        if transgenic_lines is not None:
            tls = set([ tl.lower() for tl in transgenic_lines ])
            objs = [ o for o in objs 
                     if len(tls & set([ tl.lower() 
                                        for tl in find_specimen_transgenic_lines(o['specimen']) ]) ) ]

        return objs

    def filter_experiment_containers(self, containers,
                                     ids=None,
                                     targeted_structures=None,
                                     imaging_depths=None,
                                     cre_lines=None,
                                     reporter_lines=None,
                                     transgenic_lines=None,
                                     include_failed=False,
                                     simple=False):

        containers = self.filter_experiments_and_containers(containers,
                                                            ids=ids,
                                                            targeted_structures=targeted_structures,
                                                            imaging_depths=imaging_depths,
                                                            cre_lines=cre_lines,
                                                            reporter_lines=reporter_lines,
                                                            transgenic_lines=transgenic_lines,
                                                            include_failed=include_failed)
        
        if simple:
            containers = self.simplify_experiment_containers(containers)

        return containers

    def filter_ophys_experiments(self, experiments,
                                 ids=None,
                                 experiment_container_ids=None,
                                 targeted_structures=None,
                                 imaging_depths=None,
                                 cre_lines=None,
                                 reporter_lines=None,
                                 transgenic_lines=None,
                                 stimuli=None,
                                 session_types=None,
                                 include_failed=False,
                                 require_eye_tracking=False,
                                 simple=False):

        experiments = self.filter_experiments_and_containers(experiments,
                                                             ids=ids,
                                                             targeted_structures=targeted_structures,
                                                             imaging_depths=imaging_depths,
                                                             cre_lines=cre_lines,
                                                             reporter_lines=reporter_lines,
                                                             transgenic_lines=transgenic_lines)

        if require_eye_tracking:
            experiments = [e for e in experiments
                           if e.get('fail_eye_tracking', None) is False]
        if not include_failed:
            experiments = [e for e in experiments 
                           if not e.get('experiment_container',{}).get('failed', False)]

        if experiment_container_ids is not None:
            experiments = [e for e in experiments if e[
                'experiment_container_id'] in experiment_container_ids]

        if session_types is not None:
            experiments = [e for e in experiments if e[
                'stimulus_name'] in session_types]

        if stimuli is not None:
            experiments = [e for e in experiments
                           if len(set(stimuli) & set(stimulus_info.stimuli_in_session(e['stimulus_name']))) > 0]

        if simple:
            experiments = self.simplify_ophys_experiments(experiments)

        return experiments

    def filter_cell_specimens(self, cell_specimens,
                              ids=None,
                              experiment_container_ids=None,
                              include_failed=False,
                              filters=None):
        """
        Filter a list of cell specimen records returned from the get_cell_metrics method according 
        some of their properties.

        Parameters
        ----------
        cell_specimens: list of dicts
            List of records returned by the get_cell_metrics method.

        ids: list of integers
            Return only records for cells with cell specimen ids in this list

        experiment_container_ids: list of integers
            Return only records for cells that belong to experiment container ids in this list

        include_failed: bool
            Whether to include cells from failed experiment containers

        filters: list of dicts
            Custom query used to reproduce filter sets created in the Allen Brain Observatory
            web application.  The general form is a list of dictionaries each of which
            describes a filtering operation based on a metric.  For more information, see
            dataframe_query.  
        """

        if not include_failed:
            cell_specimens = [c for c in cell_specimens if not c.get(
                    'failed_experiment_container', False)]

        if ids is not None:
            cell_specimens = [c for c in cell_specimens if c[
                'cell_specimen_id'] in ids]

        if experiment_container_ids is not None:
            cell_specimens = [c for c in cell_specimens if c[
                'experiment_container_id'] in experiment_container_ids]

        if filters is not None:
            cell_specimens = self.dataframe_query(cell_specimens,
                                                  filters,
                                                  'cell_specimen_id')

        return cell_specimens

    def dataframe_query_string(self,
                               filters):
        """
        Convert a list of cell metric filter dictionaries into a 
        Pandas query string.
        """

        def _quote_string(v):
            if isinstance(v, string_types):
                return "'%s'" % (v)
            else:
                return str(v)

        def _filter_clause(op, field, value):
            if op == 'in':
                query_args = [field, str(value)]
            elif type(value) is list:
                query_args = [field] + list(map(_quote_string, value))
            else:
                query_args = [field, str(value)]

            cluster_string = self._QUERY_TEMPLATES[op].\
                format(*query_args)

            return cluster_string

        query_string = ' & '.join(_filter_clause(f['op'],
                                                 f['field'],
                                                 f['value']) for f in filters)

        return query_string

    def dataframe_query(self,
                        data,
                        filters,
                        primary_key):
        """
        Given a list of dictionary records and a list of filter dictionaries,
        filter the records using Pandas and return the filtered set of records.
        
        Parameters
        ----------
        data: list of dicts
           List of dictionaries

        filters: list of dicts
           Each dictionary describes a filtering operation on a field in the dictionary.
           The general form is { 'field': <field>, 'op': <operation>, 'value': <filter_value(s)> }.
           For example, you can apply a threshold on the "osi_dg" column with something like this:
           { 'field': 'osi_dg', 'op': '>', 'value': 1.0 }.  See _QUERY_TEMPLATES for a full list
           of operators.
        """

        if len(filters) == 0:
            return data

        queries = self.dataframe_query_string(filters)
        result_dataframe = pd.DataFrame(data)
        result_dataframe = result_dataframe.query(queries)

        result_keys = set(result_dataframe[primary_key])
        result = [d for d in data
                  if d[primary_key]
                  in result_keys]

        return result

    def get_cell_specimen_id_mapping(self, file_name, mapping_table_id=None):
        '''Download mapping table from old to new cell specimen IDs.

        The mapping table is a CSV file that maps cell specimen ids
        that have changed between processing runs of the Brain
        Observatory pipeline.

        Parameters
        ----------
        file_name : string
            Filename to save locally.
        mapping_table_id : integer
            ID of the mapping table file. Defaults to the most recent
            mapping table. 

        Returns
        -------
        pandas.DataFrame
            Mapping table as a DataFrame.
        '''
        if mapping_table_id is None:
            mapping_table_id = self.CELL_MAPPING_ID
        data = self.template_query('brain_observatory_queries',
                                   'cell_specimen_id_mapping_table',
                                   mapping_table_id=mapping_table_id)

        try:
            file_url = data[0]['download_link']
        except Exception as _:
            raise Exception("No OphysCellSpecimenIdMapping file found.")

        self.retrieve_file_over_http(self.api_url + file_url, file_name)

        return pd.read_csv(file_name)

    def simplify_experiment_containers(self, containers):
        return [{
            'id': c['id'],
            'imaging_depth': c['imaging_depth'],
            'targeted_structure': c['targeted_structure']['acronym'],
            'cre_line': find_specimen_cre_line(c['specimen']),
            'reporter_line': find_specimen_reporter_line(c['specimen']),
            'donor_name': c['specimen']['donor']['external_donor_name'],
            'specimen_name': c['specimen']['name'],
            'tags': find_container_tags(c),
            'failed': c['failed']
        } for c in containers]


    def simplify_ophys_experiments(self, exps):
        return [{
            'id': e['id'],
            'imaging_depth': e['imaging_depth'],
            'targeted_structure': e['targeted_structure']['acronym'],
            'cre_line': find_specimen_cre_line(e['specimen']),
            'reporter_line': find_specimen_reporter_line(e['specimen']),
            'acquisition_age_days': find_experiment_acquisition_age(e),
            'experiment_container_id': e['experiment_container_id'],
            'session_type': e['stimulus_name'],
            'donor_name': e['specimen']['donor']['external_donor_name'],
            'specimen_name': e['specimen']['name'],
                'fail_eye_tracking': e.get('fail_eye_tracking', None)
        } for e in exps]
class VoxelModelApi(MouseConnectivityApi):
    '''HTTP Client extending MouseConnectivityApi to download model data.
    '''
    HTTP_MODEL_DIRECTORY = "http://download.alleninstitute.org/publications/"\
            "A_high_resolution_data-driven_model_of_the_mouse_connectome/"

    NODES_FILE = "nodes.csv.gz"
    WEIGHTS_FILE = "weights.csv.gz"
    SOURCE_MASK_FILE = "source_mask_params.json"
    TARGET_MASK_FILE = "target_mask_params.json"

    CONNECTION_DENSITY_FILE = 'connection_density.csv.gz'
    CONNECTION_STRENGTH_FILE = 'connection_strength.csv.gz'
    NORMALIZED_CONNECTION_DENSITY_FILE = 'normalized_connection_density.csv.gz'
    NORMALIZED_CONNECTION_STRENGTH_FILE = 'normalized_connection_strength.csv.gz'

    def download_model_files(self, file_name, save_file_path=None):
        """Download  data.

        Parameters
        ----------
        file_name : string, optional
        save_file_path : string, optional
            File name to save as.
        """
        url = self.HTTP_MODEL_DIRECTORY + file_name
        self.retrieve_file_over_http(url, save_file_path)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_nodes(self, file_name):
        self.download_model_files(self.NODES_FILE, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_weights(self, file_name):
        self.download_model_files(self.WEIGHTS_FILE, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_source_mask_params(self, file_name):
        self.download_model_files(self.SOURCE_MASK_FILE, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_target_mask_params(self, file_name):
        self.download_model_files(self.TARGET_MASK_FILE, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_connection_density(self, file_name):
        self.download_model_files(self.CONNECTION_DENSITY_FILE, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_connection_strength(self, file_name):
        self.download_model_files(self.CONNECTION_STRENGTH_FILE, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_normalized_connection_density(self, file_name):
        self.download_model_files(self.NORMALIZED_CONNECTION_DENSITY_FILE, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1, path_keyword='path'))
    def download_normalized_connection_strength(self, file_name):
        self.download_model_files(self.NORMALIZED_CONNECTION_STRENGTH_FILE, file_name)
Exemple #23
0
class MouseConnectivityApiPrerelease(MouseConnectivityApi):
    '''Client for retrieving prereleased mouse connectivity data from lims.

    Parameters
    ----------
    base_uri : string, optional
        Does not affect pulling from lims.
    file_name : string, optional
        File name to save/read storage_directories dict. Passed to
        GridDataApiPrerelease constructor.
    '''

    def __init__(self,
                 storage_directories_file_name,
                 cache_storage_directories=True,
                 base_uri=None):
        super(MouseConnectivityApiPrerelease, self).__init__(base_uri=base_uri)
        self.grid_data_api = GridDataApiPrerelease.from_file_name(
               storage_directories_file_name, cache=cache_storage_directories)

    @cacheable()
    def get_experiments(self):
        query_result = lu.query(_EXPERIMENT_QUERY)

        experiments = []
        for row in query_result:
            if str(row[b'id']) in self.grid_data_api.storage_directories:

                exp_dict = _experiment_dict(row)
                experiments.append(exp_dict)

        return experiments

    #@cacheable()
    def get_structure_unionizes(self):
        raise NotImplementedError()

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_injection_density(self, path, experiment_id, resolution):
        file_name = "%s_%s.nrrd" % (GridDataApi.INJECTION_DENSITY, resolution)

        self.grid_data_api.download_projection_grid_data(
            path, experiment_id, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_projection_density(self, path, experiment_id, resolution):
        file_name = "%s_%s.nrrd" % (GridDataApi.PROJECTION_DENSITY, resolution)

        self.grid_data_api.download_projection_grid_data(
            path, experiment_id, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_injection_fraction(self, path, experiment_id, resolution):
        file_name = "%s_%s.nrrd" % (GridDataApi.INJECTION_FRACTION, resolution)

        self.grid_data_api.download_projection_grid_data(
            path, experiment_id, file_name)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_data_mask(self, path, experiment_id, resolution):
        file_name = "%s_%s.nrrd" % (GridDataApi.DATA_MASK, resolution)

        self.grid_data_api.download_projection_grid_data(
            path, experiment_id, file_name)
Exemple #24
0
    def get_cell_specimens(self,
                           file_name=None,
                           ids=None,
                           experiment_container_ids=None,
                           include_failed=False,
                           simple=True,
                           filters=None):
        """ Return cell specimens that have certain properies.

        Parameters
        ----------
        file_name: string
            File name to save/read the cell specimens.  If file_name is None,
            the file_name will be pulled out of the manifest.  If caching
            is disabled, no file will be saved. Default is None.

        ids: list
            List of cell specimen ids.

        experiment_container_ids: list
            List of experiment container ids.

        include_failed: bool
            Whether to include cells from failed experiment containers

        simple: boolean
            Whether or not to simplify the dictionary properties returned by this method
            to a more concise subset.

        filters: list of dicts
            List of filter dictionaries.  The Allen Brain Observatory web site can
            generate filters in this format to reproduce a filtered set of cells
            found there.  To see what these look like, visit
            http://observatory.brain-map.org/visualcoding, perform a cell search
            and apply some filters (e.g. find cells in a particular area), then
            click the "view these cells in the AllenSDK" link on the bottom-left
            of the search results page.  This will take you to a page that contains
            a code sample you can use to apply those same filters via this argument.
            For more detail on the filter syntax, see BrainObservatoryApi.dataframe_query.


        Returns
        -------
        list of dictionaries
        """

        file_name = self.get_cache_path(file_name, self.CELL_SPECIMENS_KEY)

        cell_specimens = self.api.get_cell_metrics(
            path=file_name,
            strategy='lazy',
            pre=lambda x: [y for y in x],
            **Cache.cache_json())

        cell_specimens = self.api.filter_cell_specimens(
            cell_specimens,
            ids=ids,
            experiment_container_ids=experiment_container_ids,
            include_failed=include_failed,
            filters=filters)

        # drop the thumbnail columns
        if simple:
            mappings = self._get_stimulus_mappings()
            thumbnails = [
                m['item'] for m in mappings
                if m['item_type'] == 'T' and m['level'] == 'R'
            ]
            for cs in cell_specimens:
                for t in thumbnails:
                    del cs[t]

        return cell_specimens
Exemple #25
0
    def get_ophys_experiments(self,
                              file_name=None,
                              ids=None,
                              experiment_container_ids=None,
                              targeted_structures=None,
                              imaging_depths=None,
                              cre_lines=None,
                              reporter_lines=None,
                              transgenic_lines=None,
                              stimuli=None,
                              session_types=None,
                              cell_specimen_ids=None,
                              include_failed=False,
                              require_eye_tracking=False,
                              simple=True):
        """ Get a list of ophys experiments matching certain criteria.

        Parameters
        ----------
        file_name: string
            File name to save/read the ophys experiments.  If file_name is None,
            the file_name will be pulled out of the manifest.  If caching
            is disabled, no file will be saved. Default is None.

        ids: list
            List of ophys experiment ids.

        experiment_container_ids: list
            List of experiment container ids.

        targeted_structures: list
            List of structure acronyms.  Must be in the list returned by
            BrainObservatoryCache.get_all_targeted_structures().

        imaging_depths: list
            List of imaging depths.  Must be in the list returned by
            BrainObservatoryCache.get_all_imaging_depths().

        cre_lines: list
            List of cre lines.  Must be in the list returned by
            BrainObservatoryCache.get_all_cre_lines().
        
        reporter_lines: list
            List of reporter lines.  Must be in the list returned by
            BrainObservatoryCache.get_all_reporter_lines().

        transgenic_lines: list
            List of transgenic lines. Must be in the list returned by
            BrainObservatoryCache.get_all_cre_lines() or.
            BrainObservatoryCache.get_all_reporter_lines().

        stimuli: list
            List of stimulus names.  Must be in the list returned by
            BrainObservatoryCache.get_all_stimuli().

        session_types: list
            List of stimulus session type names.  Must be in the list returned by
            BrainObservatoryCache.get_all_session_types().

        cell_specimen_ids: list
            Only include experiments that contain cells with these ids.

        include_failed: boolean
            Whether or not to include experiments from failed experiment containers.

        simple: boolean
            Whether or not to simplify the dictionary properties returned by this method
            to a more concise subset.

        require_eye_tracking: boolean
            If True, only return experiments that have eye tracking results. Default: False.

        Returns
        -------
        list of dictionaries
        """
        _assert_not_string(targeted_structures, "targeted_structures")
        _assert_not_string(cre_lines, "cre_lines")
        _assert_not_string(reporter_lines, "reporter_lines")
        _assert_not_string(transgenic_lines, "transgenic_lines")
        _assert_not_string(stimuli, "stimuli")
        _assert_not_string(session_types, "session_types")

        file_name = self.get_cache_path(file_name, self.EXPERIMENTS_KEY)

        exps = self.api.get_ophys_experiments(path=file_name,
                                              strategy='lazy',
                                              **Cache.cache_json())

        # NOTE: Ugly hack to update the 'fail_eye_tracking' field
        # which is using True/False values for the previous eye mapping
        # implementation. This will also need to be fixed in warehouse.
        # ----- Start of ugly hack -----
        response = self.api.template_query('brain_observatory_queries',
                                           'all_eye_mapping_files')

        session_ids_with_eye_tracking: set = {
            entry['attachable_id']
            for entry in response if entry['attachable_type'] == "OphysSession"
        }

        for indx, exp in enumerate(exps):
            try:
                ophys_session_id = ophys_experiment_session_id_map[exp['id']]
                if ophys_session_id in session_ids_with_eye_tracking:
                    exps[indx]['fail_eye_tracking'] = False
                else:
                    exps[indx]['fail_eye_tracking'] = True
            except KeyError:
                exps[indx]['fail_eye_tracking'] = True
        # ----- End of ugly hack -----

        if cell_specimen_ids is not None:
            cells = self.get_cell_specimens(ids=cell_specimen_ids)
            cell_container_ids = set(
                [cell['experiment_container_id'] for cell in cells])
            if experiment_container_ids is not None:
                experiment_container_ids = list(
                    set(experiment_container_ids) - cell_container_ids)
            else:
                experiment_container_ids = list(cell_container_ids)

        exps = self.api.filter_ophys_experiments(
            exps,
            ids=ids,
            experiment_container_ids=experiment_container_ids,
            targeted_structures=targeted_structures,
            imaging_depths=imaging_depths,
            cre_lines=cre_lines,
            reporter_lines=reporter_lines,
            transgenic_lines=transgenic_lines,
            stimuli=stimuli,
            session_types=session_types,
            include_failed=include_failed,
            require_eye_tracking=require_eye_tracking,
            simple=simple)

        return exps
Exemple #26
0
    def get_experiment_containers(self,
                                  file_name=None,
                                  ids=None,
                                  targeted_structures=None,
                                  imaging_depths=None,
                                  cre_lines=None,
                                  reporter_lines=None,
                                  transgenic_lines=None,
                                  include_failed=False,
                                  simple=True):
        """ Get a list of experiment containers matching certain criteria.

        Parameters
        ----------
        file_name: string
            File name to save/read the experiment containers.  If file_name is None,
            the file_name will be pulled out of the manifest.  If caching
            is disabled, no file will be saved. Default is None.

        ids: list
            List of experiment container ids.

        targeted_structures: list
            List of structure acronyms.  Must be in the list returned by
            BrainObservatoryCache.get_all_targeted_structures().

        imaging_depths: list
            List of imaging depths.  Must be in the list returned by
            BrainObservatoryCache.get_all_imaging_depths().

        cre_lines: list
            List of cre lines.  Must be in the list returned by
            BrainObservatoryCache.get_all_cre_lines().

        reporter_lines: list
            List of reporter lines.  Must be in the list returned by
            BrainObservatoryCache.get_all_reporter_lines().

        transgenic_lines: list
            List of transgenic lines. Must be in the list returned by
            BrainObservatoryCache.get_all_cre_lines() or.
            BrainObservatoryCache.get_all_reporter_lines().

        include_failed: boolean
            Whether or not to include failed experiment containers.

        simple: boolean
            Whether or not to simplify the dictionary properties returned by this method
            to a more concise subset.

        Returns
        -------
        list of dictionaries
        """
        _assert_not_string(targeted_structures, "targeted_structures")
        _assert_not_string(cre_lines, "cre_lines")
        _assert_not_string(reporter_lines, "reporter_lines")
        _assert_not_string(transgenic_lines, "transgenic_lines")

        file_name = self.get_cache_path(file_name,
                                        self.EXPERIMENT_CONTAINERS_KEY)

        containers = self.api.get_experiment_containers(path=file_name,
                                                        strategy='lazy',
                                                        **Cache.cache_json())

        containers = self.api.filter_experiment_containers(
            containers,
            ids=ids,
            targeted_structures=targeted_structures,
            imaging_depths=imaging_depths,
            cre_lines=cre_lines,
            reporter_lines=reporter_lines,
            transgenic_lines=transgenic_lines,
            include_failed=include_failed,
            simple=simple)

        return containers
Exemple #27
0
def cache():
    return Cache()
Exemple #28
0
class MouseConnectivityApi(ReferenceSpaceApi, GridDataApi):
    '''
    HTTP Client for the Allen Mouse Brain Connectivity Atlas.

    See: `Mouse Connectivity API <http://help.brain-map.org/display/mouseconnectivity/API>`_
    '''
    PRODUCT_IDS = [5, 31]

    def __init__(self, base_uri=None):
        super(MouseConnectivityApi, self).__init__(base_uri=base_uri)

    @cacheable()
    def get_experiments(self, structure_ids, **kwargs):
        '''
        Fetch experiment metadata from the Mouse Brain Connectivity Atlas.

        Parameters
        ----------
        structure_ids : integer or list, optional
            injection structure

        Returns
        -------
        url : string
            The constructed URL
        '''
        criteria_list = [
            '[failed$eqfalse]',
            'products[id$in%s]' %
            (','.join(str(i) for i in MouseConnectivityApi.PRODUCT_IDS))
        ]

        if structure_ids is not None:
            if type(structure_ids) is not list:
                structure_ids = [structure_ids]
            criteria_list.append('[id$in%s]' %
                                 ','.join(str(i) for i in structure_ids))

        criteria_string = ','.join(criteria_list)

        return self.model_query('SectionDataSet',
                                criteria=criteria_string,
                                **kwargs)

    @cacheable()
    def get_experiments_api(self):
        '''
        Fetch experiment metadata from the Mouse Brain Connectivity Atlas via the ApiConnectivity table.

        Returns
        -------
        url : string
            The constructed URL
        '''
        return self.model_query('ApiConnectivity', num_rows='all')

    @cacheable()
    def get_manual_injection_summary(self, experiment_id):
        ''' Retrieve manual injection summary. '''

        criteria = '[id$in%d]' % (experiment_id)

        include = [
            'specimen(donor(transgenic_mouse(transgenic_lines)),',
            'injections(structure,age)),', 'equalization,products'
        ]

        only = [
            'id', 'failed', 'storage_directory', 'red_lower', 'red_upper',
            'green_lower', 'green_upper', 'blue_lower', 'blue_upper',
            'products.id', 'specimen_id', 'structure_id', 'reference_space_id',
            'primary_injection_structure_id', 'registration_point',
            'coordinates_ap', 'coordinates_dv', 'coordinates_ml', 'angle',
            'sex', 'strain', 'injection_materials', 'acronym',
            'structures.name', 'days', 'transgenic_mice.name',
            'transgenic_lines.name', 'transgenic_lines.description',
            'transgenic_lines.id', 'donors.id'
        ]

        return self.model_query('SectionDataSet',
                                criteria=criteria,
                                include=include,
                                only=only)

    @cacheable()
    def get_experiment_detail(self, experiment_id):
        '''Retrieve the experiments data.'''

        criteria = '[id$eq%d]' % (experiment_id)
        include = [
            'specimen(stereotaxic_injections(primary_injection_structure,structures,stereotaxic_injection_coordinates)),',
            'equalization,', 'sub_images'
        ]
        order = ["'sub_images.section_number$asc'"]

        return self.model_query('SectionDataSet',
                                criteria=criteria,
                                include=include,
                                order=order)

    @cacheable()
    def get_projection_image_info(self, experiment_id, section_number):
        '''Fetch meta-information of one projection image.

        Parameters
        ----------
        experiment_id : integer

        section_number : integer

        Notes
        -----
        See: image examples under
        `Experimental Overview and Metadata <http://help.brain-map.org/display/mouseconnectivity/API##API-ExperimentalOverviewandMetadata>`_
        for additional documentation.
        Download the image using :py:meth:`allensdk.api.queries.image_download_api.ImageDownloadApi.download_section_image`
        '''

        criteria = '[id$eq%d]' % (experiment_id)
        include = [
            'equalization,sub_images[section_number$eq%d]' % (section_number)
        ]

        return self.model_query('SectionDataSet',
                                criteria=criteria,
                                include=include)

    def download_reference_aligned_image_channel_volumes(
            self, data_set_id, save_file_path=None):
        '''
        Returns
        -------
            The well known file is downloaded
        '''
        well_known_file_url = self.get_reference_aligned_image_channel_volumes_url(
            data_set_id)

        if save_file_path is None:
            save_file_path = str(data_set_id) + '.zip'

        self.retrieve_file_over_http(well_known_file_url, save_file_path)

    def build_reference_aligned_image_channel_volumes_url(self, data_set_id):
        '''Construct url to download the red, green, and blue channels
        aligned to the 25um adult mouse brain reference space volume.

        Parameters
        ----------
        data_set_id : integerallensdk.api.queries
            aka attachable_id

        Notes
        -----
        See: `Reference-aligned Image Channel Volumes <http://help.brain-map.org/display/mouseconnectivity/API#API-ReferencealignedImageChannelVolumes>`_
        for additional documentation.
        '''

        criteria = [
            'well_known_file_type', "[name$eq'ImagesResampledTo25MicronARA']",
            "[attachable_id$eq%d]" % (data_set_id)
        ]

        model_stage = self.model_stage('WellKnownFile', criteria=criteria)

        url = self.build_query_url([model_stage])

        return url

    def get_reference_aligned_image_channel_volumes_url(self, data_set_id):
        '''Retrieve the download link for a specific data set.\

        Notes
        -----
        See `Reference-aligned Image Channel Volumes <http://help.brain-map.org/display/mouseconnectivity/API#API-ReferencealignedImageChannelVolumes>`_
        for additional documentation.
        '''
        download_link = self.do_query(
            self.build_reference_aligned_image_channel_volumes_url,
            lambda parsed_json: str(parsed_json['msg'][0]['download_link']),
            data_set_id)

        url = self.api_url + download_link

        return url

    def experiment_source_search(self, **kwargs):
        '''Search over the whole projection signal statistics dataset
        to find experiments with specific projection profiles.

        Parameters
        ----------
        injection_structures : list of integers or strings
            Integer Structure.id or String Structure.acronym.
        target_domain : list of integers or strings, optional
            Integer Structure.id or String Structure.acronym.
        injection_hemisphere : string, optional
            'right' or 'left', Defaults to both hemispheres.
        target_hemisphere : string, optional
            'right' or 'left', Defaults to both hemispheres.
        transgenic_lines : list of integers or strings, optional
             Integer TransgenicLine.id or String TransgenicLine.name. Specify ID 0 to exclude all TransgenicLines.
        injection_domain : list of integers or strings, optional
             Integer Structure.id or String Structure.acronym.
        primary_structure_only : boolean, optional
        product_ids : list of integers, optional
            Integer Product.id
        start_row : integer, optional
            For paging purposes. Defaults to 0.
        num_rows : integer, optional
            For paging purposes. Defaults to 2000.

        Notes
        -----
        See `Source Search <http://help.brain-map.org/display/mouseconnectivity/API#API-SourceSearch>`_,
        `Target Search <http://help.brain-map.org/display/mouseconnectivity/API#API-TargetSearch>`_,
        and
        `service::mouse_connectivity_injection_structure <http://help.brain-map.org/display/api/Connected+Services+and+Pipes#ConnectedServicesandPipes-service%3A%3Amouseconnectivityinjectionstructure>`_.

        '''
        tuples = [(k, v) for k, v in six.iteritems(kwargs)]
        return self.service_query('mouse_connectivity_injection_structure',
                                  parameters=tuples)

    def experiment_spatial_search(self, **kwargs):
        '''Displays all SectionDataSets
        with projection signal density >= 0.1 at the seed point.
        This service also returns the path
        along the most dense pixels from the seed point
        to the center of each injection site..

        Parameters
        ----------
        seed_point : list of floats
            The coordinates of a point in 3-D SectionDataSet space.
        transgenic_lines : list of integers or strings, optional
            Integer TransgenicLine.id or String TransgenicLine.name. Specify ID 0 to exclude all TransgenicLines.
        section_data_sets : list of integers, optional
            Ids to filter the results.
        injection_structures : list of integers or strings, optional
            Integer Structure.id or String Structure.acronym.
        primary_structure_only : boolean, optional
        product_ids : list of integers, optional
            Integer Product.id
        start_row : integer, optional
            For paging purposes. Defaults to 0.
        num_rows : integer, optional
            For paging purposes. Defaults to 2000.

        Notes
        -----
        See `Spatial Search <http://help.brain-map.org/display/mouseconnectivity/API#API-SpatialSearch>`_
        and
        `service::mouse_connectivity_target_spatial <http://help.brain-map.org/display/api/Connected+Services+and+Pipes#ConnectedServicesandPipes-service%3A%3Amouseconnectivitytargetspatial>`_.

        '''

        tuples = [(k, v) for k, v in six.iteritems(kwargs)]
        return self.service_query('mouse_connectivity_target_spatial',
                                  parameters=tuples)

    def experiment_injection_coordinate_search(self, **kwargs):
        '''User specifies a seed location within the 3D reference space.
        The service returns a rank list of experiments
        by distance of its injection site to the specified seed location.

        Parameters
        ----------
        seed_point : list of floats
            The coordinates of a point in 3-D SectionDataSet space.
        transgenic_lines : list of integers or strings, optional
            Integer TransgenicLine.id or String TransgenicLine.name. Specify ID 0 to exclude all TransgenicLines.
        injection_structures : list of integers or strings, optional
            Integer Structure.id or String Structure.acronym.
        primary_structure_only : boolean, optional
        product_ids : list of integers, optional
            Integer Product.id
        start_row : integer, optional
            For paging purposes. Defaults to 0.
        num_rows : integer, optional
            For paging purposes. Defaults to 2000.

        Notes
        -----
        See `Injection Coordinate Search <http://help.brain-map.org/display/mouseconnectivity/API#API-InjectionCoordinateSearch>`_
        and
        `service::mouse_connectivity_injection_coordinate <http://help.brain-map.org/display/api/Connected+Services+and+Pipes#ConnectedServicesandPipes-service%3A%3Amouseconnectivityinjectioncoordinate>`_.

        '''
        tuples = [(k, v) for k, v in six.iteritems(kwargs)]
        return self.service_query('mouse_connectivity_injection_coordinate',
                                  parameters=tuples)

    def experiment_correlation_search(self, **kwargs):
        '''Select a seed experiment and a domain over
        which the similarity comparison is to be made.


        Parameters
        ----------
        row : integer
            SectionDataSet.id to correlate against.
        structures : list of integers or strings, optional
            Integer Structure.id or String Structure.acronym.
        hemisphere : string, optional
            Use 'right' or 'left'. Defaults to both hemispheres.
        transgenic_lines : list of integers or strings, optional
            Integer TransgenicLine.id or String TransgenicLine.name. Specify ID 0 to exclude all TransgenicLines.
        injection_structures : list of integers or strings, optional
            Integer Structure.id or String Structure.acronym.
        primary_structure_only : boolean, optional
        product_ids : list of integers, optional
            Integer Product.id
        start_row : integer, optional
            For paging purposes. Defaults to 0.
        num_rows : integer, optional
            For paging purposes. Defaults to 2000.

        Notes
        -----
        See `Correlation Search <http://help.brain-map.org/display/mouseconnectivity/API#API-CorrelationSearch>`_
        and
        `service::mouse_connectivity_correlation <http://help.brain-map.org/display/api/Connected+Services+and+Pipes#ConnectedServicesandPipes-service%3A%3Amouseconnectivitycorrelation>`_.

        '''
        tuples = sorted(six.iteritems(kwargs))
        return self.service_query('mouse_connectivity_correlation',
                                  parameters=tuples)

    @cacheable()
    def get_structure_unionizes(self,
                                experiment_ids,
                                is_injection=None,
                                structure_name=None,
                                structure_ids=None,
                                hemisphere_ids=None,
                                normalized_projection_volume_limit=None,
                                include=None,
                                debug=None,
                                order=None):

        experiment_filter = '[section_data_set_id$in%s]' %\
                            ','.join(str(i) for i in experiment_ids)

        if is_injection is True:
            is_injection_filter = '[is_injection$eqtrue]'
        elif is_injection is False:
            is_injection_filter = '[is_injection$eqfalse]'
        else:
            is_injection_filter = ''

        if normalized_projection_volume_limit is not None:
            volume_filter = '[normalized_projection_volume$gt%f]' %\
                            (normalized_projection_volume_limit)
        else:
            volume_filter = ''

        if hemisphere_ids is not None:
            hemisphere_filter = '[hemisphere_id$in%s]' %\
                ','.join(str(h) for h in hemisphere_ids)
        else:
            hemisphere_filter = ''

        if structure_name is not None:
            structure_filter = ",structure[name$eq'%s']" % (structure_name)
        elif structure_ids is not None:
            structure_filter = '[structure_id$in%s]' %\
                               ','.join(str(i) for i in structure_ids)
        else:
            structure_filter = ''

        return self.model_query('ProjectionStructureUnionize',
                                criteria=''.join([
                                    experiment_filter, is_injection_filter,
                                    volume_filter, hemisphere_filter,
                                    structure_filter
                                ]),
                                include=include,
                                order=order,
                                num_rows='all',
                                debug=debug,
                                count=False)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_injection_density(self, path, experiment_id, resolution):
        self.download_projection_grid_data(experiment_id,
                                           [GridDataApi.INJECTION_DENSITY],
                                           resolution, path)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_projection_density(self, path, experiment_id, resolution):
        self.download_projection_grid_data(experiment_id,
                                           [GridDataApi.PROJECTION_DENSITY],
                                           resolution, path)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_injection_fraction(self, path, experiment_id, resolution):
        self.download_projection_grid_data(experiment_id,
                                           [GridDataApi.INJECTION_FRACTION],
                                           resolution, path)

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=1,
                                           path_keyword='path'))
    def download_data_mask(self, path, experiment_id, resolution):
        self.download_projection_grid_data(experiment_id,
                                           [GridDataApi.DATA_MASK], resolution,
                                           path)

    def calculate_injection_centroid(self,
                                     injection_density,
                                     injection_fraction,
                                     resolution=25):
        '''
        Compute the centroid of an injection site.

        Parameters
        ----------

        injection_density: np.ndarray
            The injection density volume of an experiment

        injection_fraction: np.ndarray
            The injection fraction volume of an experiment

        '''

        # find all voxels with injection_fraction > 0
        injection_voxels = np.nonzero(injection_fraction)
        injection_density_computed = np.multiply(
            injection_density[injection_voxels],
            injection_fraction[injection_voxels])
        sum_density = np.sum(injection_density_computed)

        # compute centroid in CCF coordinates
        if sum_density > 0:
            centroid = np.dot(
                injection_density_computed, list(
                    zip(*injection_voxels))) / sum_density * resolution
        else:
            centroid = None

        return centroid
Exemple #29
0
class CellTypesApi(RmaApi):
    NWB_FILE_TYPE = 'NWBDownload'
    SWC_FILE_TYPE = '3DNeuronReconstruction'
    MARKER_FILE_TYPE = '3DNeuronMarker'

    MOUSE = 'Mus musculus'
    HUMAN = 'H**o Sapiens'

    def __init__(self, base_uri=None):
        super(CellTypesApi, self).__init__(base_uri)

    @cacheable()
    def list_cells_api(self,
                       id=None,
                       require_morphology=False,
                       require_reconstruction=False,
                       reporter_status=None,
                       species=None):

        criteria = None

        if id:
            criteria = "[specimen__id$eq%d]" % id

        cells = self.model_query('ApiCellTypesSpecimenDetail',
                                 criteria=criteria,
                                 num_rows='all')

        return cells

    @deprecated("please use list_cells_api instead")
    def list_cells(self,
                   id=None,
                   require_morphology=False,
                   require_reconstruction=False,
                   reporter_status=None,
                   species=None):
        """
        Query the API for a list of all cells in the Cell Types Database.

        Parameters
        ----------
        id: int
            ID of a cell.  If not provided returns all matching cells.  

        require_morphology: boolean
            Only return cells that have morphology images.

        require_reconstruction: boolean
            Only return cells that have morphological reconstructions.

        reporter_status: list
            Return cells that have a particular cell reporter status.

        species: list
            Filter for cells that belong to one or more species.  If None, return all.
            Must be one of [ CellTypesApi.MOUSE, CellTypesApi.HUMAN ].

        Returns
        -------
        list
            Meta data for all cells.
        """

        if id:
            criteria = "[id$eq'%d']" % id
        else:
            criteria = "[is_cell_specimen$eq'true'],products[name$in'Mouse Cell Types','Human Cell Types'],ephys_result[failed$eqfalse]"

        include = (
            'structure,cortex_layer,donor(transgenic_lines,organism,conditions),specimen_tags,cell_soma_locations,'
            + 'ephys_features,data_sets,neuron_reconstructions,cell_reporter')

        cells = self.model_query('Specimen',
                                 criteria=criteria,
                                 include=include,
                                 num_rows='all')

        for cell in cells:
            # specimen tags
            for tag in cell['specimen_tags']:
                tag_name, tag_value = tag['name'].split(' - ')
                tag_name = tag_name.replace(' ', '_')
                cell[tag_name] = tag_value

            # morphology and reconstuction
            cell['has_reconstruction'] = len(
                cell['neuron_reconstructions']) > 0
            cell['has_morphology'] = len(cell['data_sets']) > 0

            # transgenic line
            cell['transgenic_line'] = None
            for tl in cell['donor']['transgenic_lines']:
                if tl['transgenic_line_type_name'] == 'driver':
                    cell['transgenic_line'] = tl['name']

            # cell reporter status
            cell['reporter_status'] = cell.get('cell_reporter',
                                               {}).get('name', None)

            # species
            cell['species'] = cell.get('donor', {}).get('organism',
                                                        {}).get('name', None)

            # conditions (whitelist)
            condition_types = ['disease categories']
            condition_keys = dict(
                zip(condition_types,
                    [ct.replace(' ', '_') for ct in condition_types]))
            for ct, ck in condition_keys.items():
                cell[ck] = []

            conditions = cell.get('donor', {}).get('conditions', [])
            for condition in conditions:
                c_type, c_val = condition['name'].split(' - ')
                if c_type in condition_keys:
                    cell[condition_keys[c_type]].append(c_val)

        result = self.filter_cells(cells, require_morphology,
                                   require_reconstruction, reporter_status,
                                   species)

        return result

    def get_cell(self, id):
        '''
        Query the API for a one cells in the Cell Types Database.

        
        Returns
        -------
        list
            Meta data for one cell.
        '''

        cells = self.list_cells_api(id=id)
        cell = None if not cells else cells[0]
        return cell

    @cacheable()
    def get_ephys_sweeps(self, specimen_id):
        """
        Query the API for a list of sweeps for a particular cell in the Cell Types Database.

        Parameters
        ----------
        specimen_id: int
            Specimen ID of a cell.

        Returns
        -------
        list: List of sweep dictionaries belonging to a cell
        """
        criteria = "[specimen_id$eq%d]" % specimen_id
        sweeps = self.model_query('EphysSweep',
                                  criteria=criteria,
                                  num_rows='all')
        return sorted(sweeps, key=lambda x: x['sweep_number'])

    @deprecated("please use filter_cells_api")
    def filter_cells(self, cells, require_morphology, require_reconstruction,
                     reporter_status, species):
        """
        Filter a list of cell specimens to those that optionally have morphologies
        or have morphological reconstructions.

        Parameters
        ----------

        cells: list
            List of cell metadata dictionaries to be filtered

        require_morphology: boolean
            Filter out cells that have no morphological images.

        require_reconstruction: boolean
            Filter out cells that have no morphological reconstructions.

        reporter_status: list
            Filter for cells that have a particular cell reporter status

        species: list
            Filter for cells that belong to one or more species.  If None, return all.
            Must be one of [ CellTypesApi.MOUSE, CellTypesApi.HUMAN ].
        """

        if require_morphology:
            cells = [c for c in cells if c['has_morphology']]

        if require_reconstruction:
            cells = [c for c in cells if c['has_reconstruction']]

        if reporter_status:
            cells = [
                c for c in cells if c['reporter_status'] in reporter_status
            ]

        if species:
            species_lower = [s.lower() for s in species]
            cells = [
                c for c in cells
                if c['donor']['organism']['name'].lower() in species_lower
            ]

        return cells

    def filter_cells_api(self,
                         cells,
                         require_morphology=False,
                         require_reconstruction=False,
                         reporter_status=None,
                         species=None,
                         simple=True):
        """
        """
        if require_morphology or require_reconstruction:
            cells = [
                c for c in cells
                if c.get('nr__reconstruction_type') is not None
            ]

        if reporter_status:
            cells = [
                c for c in cells
                if c.get('cell_reporter_status') in reporter_status
            ]

        if species:
            species_lower = [s.lower() for s in species]
            cells = [
                c for c in cells
                if c.get('donor__species', "").lower() in species_lower
            ]

        if simple:
            cells = self.simplify_cells_api(cells)

        return cells

    def simplify_cells_api(self, cells):
        return [{
            'reporter_status':
            cell['cell_reporter_status'],
            'cell_soma_location':
            [cell['csl__x'], cell['csl__y'], cell['csl__z']],
            'species':
            cell['donor__species'],
            'id':
            cell['specimen__id'],
            'name':
            cell['specimen__name'],
            'structure_layer_name':
            cell['structure__layer'],
            'structure_area_id':
            cell['structure_parent__id'],
            'structure_area_abbrev':
            cell['structure_parent__acronym'],
            'transgenic_line':
            cell['line_name'],
            'dendrite_type':
            cell['tag__dendrite_type'],
            'apical':
            cell['tag__apical'],
            'reconstruction_type':
            cell['nr__reconstruction_type'],
            'disease_state':
            cell['donor__disease_state'],
            'donor_id':
            cell['donor__id'],
            'structure_hemisphere':
            cell['specimen__hemisphere'],
            'normalized_depth':
            cell['csl__normalized_depth']
        } for cell in cells]

    @cacheable()
    def get_ephys_features(self):
        """
        Query the API for the full table of EphysFeatures for all cells.
        """

        return self.model_query(
            'EphysFeature',
            criteria='specimen(ephys_result[failed$eqfalse])',
            num_rows='all')

    @cacheable()
    def get_morphology_features(self):
        """
        Query the API for the full table of morphology features for all cells
        
        Notes
        -----
        by default the tags column is removed because it isn't useful
        """
        return self.model_query(
            'NeuronReconstruction',
            criteria="specimen(ephys_result[failed$eqfalse])",
            excpt='tags',
            num_rows='all')

    @cacheable(strategy='create',
               pathfinder=Cache.pathfinder(file_name_position=2,
                                           path_keyword='file_name'))
    def save_ephys_data(self, specimen_id, file_name):
        """
        Save the electrophysology recordings for a cell as an NWB file.

        Parameters
        ----------
        specimen_id: int
            ID of the specimen, from the Specimens database model in the Allen Institute API.

        file_name: str
            Path to save the NWB file.
        """
        criteria = '[id$eq%d],ephys_result(well_known_files(well_known_file_type[name$eq%s]))' % (
            specimen_id, self.NWB_FILE_TYPE)
        includes = 'ephys_result(well_known_files(well_known_file_type))'

        results = self.model_query('Specimen',
                                   criteria=criteria,
                                   include=includes,
                                   num_rows='all')

        try:
            file_url = results[0]['ephys_result']['well_known_files'][0][
                'download_link']
        except Exception as _:
            raise Exception("Specimen %d has no ephys data" % specimen_id)

        self.retrieve_file_over_http(self.api_url + file_url, file_name)

    def save_reconstruction(self, specimen_id, file_name):
        """
        Save the morphological reconstruction of a cell as an SWC file.

        Parameters
        ----------
        specimen_id: int
            ID of the specimen, from the Specimens database model in the Allen Institute API.

        file_name: str
            Path to save the SWC file.
        """

        Manifest.safe_make_parent_dirs(file_name)

        criteria = '[id$eq%d],neuron_reconstructions(well_known_files)' % specimen_id
        includes = 'neuron_reconstructions(well_known_files(well_known_file_type[name$eq\'%s\']))' % self.SWC_FILE_TYPE

        results = self.model_query('Specimen',
                                   criteria=criteria,
                                   include=includes,
                                   num_rows='all')

        try:
            file_url = results[0]['neuron_reconstructions'][0][
                'well_known_files'][0]['download_link']
        except:
            raise Exception("Specimen %d has no reconstruction" % specimen_id)

        self.retrieve_file_over_http(self.api_url + file_url, file_name)

    def save_reconstruction_markers(self, specimen_id, file_name):
        """
        Save the marker file for the morphological reconstruction of a cell.  These are
        comma-delimited files indicating points of interest in a reconstruction (truncation
        points, early tracing termination, etc).

        Parameters
        ----------
        specimen_id: int
            ID of the specimen, from the Specimens database model in the Allen Institute API.

        file_name: str
            Path to save the marker file.
        """

        Manifest.safe_make_parent_dirs(file_name)

        criteria = '[id$eq%d],neuron_reconstructions(well_known_files)' % specimen_id
        includes = 'neuron_reconstructions(well_known_files(well_known_file_type[name$eq\'%s\']))' % self.MARKER_FILE_TYPE

        results = self.model_query('Specimen',
                                   criteria=criteria,
                                   include=includes,
                                   num_rows='all')

        try:
            file_url = results[0]['neuron_reconstructions'][0][
                'well_known_files'][0]['download_link']
        except:
            raise LookupError("Specimen %d has no marker file" % specimen_id)

        self.retrieve_file_over_http(self.api_url + file_url, file_name)
    def get_experiments(self,
                        dataframe=False,
                        file_name=None,
                        cre=None,
                        injection_structure_ids=None):
        """
        Read a list of experiments that match certain criteria.  If caching is enabled,
        this will save the whole (unfiltered) list of experiments to a file.

        Parameters
        ----------

        dataframe: boolean
            Return the list of experiments as a Pandas DataFrame.  If False,
            return a list of dictionaries.  Default False.

        file_name: string
            File name to save/read the structures table.  If file_name is None,
            the file_name will be pulled out of the manifest.  If caching
            is disabled, no file will be saved. Default is None.

        cre: boolean or list
            If True, return only cre-positive experiments.  If False, return only
            cre-negative experiments.  If None, return all experients. If list, return
            all experiments with cre line names in the supplied list. Default None.

        injection_structure_ids: list
            Only return experiments that were injected in the structures provided here.
            If None, return all experiments.  Default None.

        """

        file_name = self.get_cache_path(file_name, self.EXPERIMENTS_KEY)

        experiments = self.api.get_experiments_api(path=file_name,
                                                   strategy='lazy',
                                                   **Cache.cache_json())

        for e in experiments:
            # renaming id
            e['id'] = e['data_set_id']
            del e['data_set_id']

            # simplify trangsenic line
            tl = e.get('transgenic_line', None)
            if tl:
                e['transgenic_line'] = tl['name']

            # parse the injection structures
            injs = [int(i) for i in e['injection_structures'].split('/')]
            e['injection_structures'] = injs
            e['primary_injection_structure'] = injs[0]

            # remove storage dir
            del e['storage_directory']

        # filter the read/downloaded list of experiments
        experiments = self.filter_experiments(experiments, cre,
                                              injection_structure_ids)

        if dataframe:
            experiments = pd.DataFrame(experiments)
            experiments.set_index(['id'], inplace=True, drop=False)

        return experiments