"mlflow.user": "******" } run.set_tags(tags) job_info_dict = { "run_id": run._run_id, "experiment_name": exp.name, "experiment_id": exp._id } json_dict = json.dumps(job_info_dict) with open(job_info_path, "w") as f: f.write(json_dict) f.close() # log environment variables env_dictionary["MLFLOW_EXPERIMENT_ID"] = exp._id env_dictionary["MLFLOW_RUN_ID"] = run._run_id env_dictionary["MLFLOW_TRACKING_URI"] = _get_mlflow_tracking_uri(ws) env_dictionary["HOME"] = "~/" print("Before running train") try: print("Trying to run train file ") ret, _ = run_command([sys.executable] + sys.argv[3:], env=env_dictionary) except subprocess.CalledProcessError as e: print("Subprocess caused error " + run_name) better_e = RuntimeError("{}\n{}".format(e.stderr, e)) run.fail(error_details=better_e) raise better_e else: run.complete() print("Marked as complete")
# モデルの評価 import os, json from azureml.core import Workspace from azureml.core import Experiment from azureml.core.model import Model import azureml.core from azureml.core import Run run_id = "" # failするrun id を記載 # Workspaceの取得 ws = Workspace.from_config() # 最新のrun, Experimentの取得 with open("aml_config/run_id.json") as f: config = json.load(f) new_model_run_id = config["run_id"] experiment_name = config["experiment_name"] exp = Experiment(workspace=ws, name=experiment_name) fail_run = Run(exp, run_id=run_id) fail_run.fail()