def get_AMLRun(): try: run = Run.get_submitted_run() return run except Exception as e: print("Caught = {}".format(e.message)) return None
os.makedirs("./outputs", exist_ok=True) test_data = pd.read_csv(f"{data_path}/test.csv") print("Shape of test_data:", test_data.shape) test_data.head() train_data = pd.read_csv(f"{data_path}/train.csv") print("Shape of train_data:", train_data.shape) train_data.head() sirna_label_encoder = LabelEncoder().fit(train_data.sirna) joblib.dump(sirna_label_encoder, "./outputs/sirna_label_encoder.joblib") run = Run.get_submitted_run() model = models.create_cnn_model() test_size = 0.025 batch_size = args.batch run.log("Batch Size", batch_size) run.log("Test fraction", test_size) run.log("Training samples", len(train_data)) run.log("Learning rate", learning_rate) aml_callback = CheckpointCallback(run) # resampling entire training dataset train_data = train_data.sample(frac=training_fraction).reset_index(
def main(argv=None): # get hold of the current run run = Run.get_submitted_run() train_evaluate(run)