def inter_subj_cc_sim(subj1_id, subj2_id, subj_dir): """Compute inter-subjects CCs similarity.""" subj1_dir = os.path.join(subj_dir, 'vS%s'%(subj1_id)) subj2_dir = os.path.join(subj_dir, 'vS%s'%(subj2_id)) #-- inter-channel similarity feat_weights_file1 = os.path.join(subj1_dir, 'plscca', 'layer1', 'feat_weights.npy') feat_weights_file2 = os.path.join(subj2_dir, 'plscca', 'layer1', 'feat_weights.npy') feat_cc_corr1 = np.load(feat_cc_corr_file1).reshape(96, 121, 10) feat_cc_corr2 = np.load(feat_cc_corr_file2).reshape(96, 121, 10) sim_mtx = np.zeros((960, 960)) for i in range(10): data1 = feat_cc_corr1[..., i] for j in range(10): data2 = feat_cc_corr2[..., j] tmp = corr2_coef(data1, data2) sim_mtx[i*96:(i+1)*96, j*96:(j+1)*96] = np.abs(tmp) np.save('feat_cc_weights_sim_subj_%s_%s.npy'%(subj1_id, subj2_id), sim_mtx) #-- inter-CC similarity #feat_cc_corr_file1 = os.path.join(subj1_dir, 'plscca', # 'layer1', 'feat_cc_corr.npy') #feat_cc_corr_file2 = os.path.join(subj2_dir, 'plscca', # 'layer1', 'feat_cc_corr.npy') #feat_cc_corr1 = np.load(feat_cc_corr_file1).reshape(96, 11, 11, 10) #feat_cc_corr2 = np.load(feat_cc_corr_file2).reshape(96, 11, 11, 10) #avg_weights1 = vutil.fweights_top_mean(feat_cc_corr1, 0.2) #avg_weights2 = vutil.fweights_top_mean(feat_cc_corr2, 0.2) #sim_mtx = corr2_coef(avg_weights1, avg_weights2) #np.save('feat_cc_sim_subj_%s_%s.npy'%(subj1_id, subj2_id), sim_mtx) pass
def plscorr_eval(train_fmri_ts, train_feat_ts, val_fmri_ts, val_feat_ts, out_dir, mask_file): """Compute PLS correlation between brain activity and CNN activation.""" train_feat_ts = train_feat_ts.reshape(-1, train_feat_ts.shape[3]).T val_feat_ts = val_feat_ts.reshape(-1, val_feat_ts.shape[3]).T train_fmri_ts = train_fmri_ts.T val_fmri_ts = val_fmri_ts.T # Iteration loop for different component number #for n in range(5, 19): # print '--- Components number %s ---' %(n) # plsca = PLSCanonical(n_components=n) # plsca.fit(train_feat_ts, train_fmri_ts) # pred_feat_c, pred_fmri_c = plsca.transform(val_feat_ts, val_fmri_ts) # pred_fmri_ts = plsca.predict(val_feat_ts) # # calculate correlation coefficient between truth and prediction # r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair') # # get top 20% corrcoef for model evaluation # vsample = int(np.rint(0.2*len(r))) # print 'Sample size for evaluation : %s' % (vsample) # r.sort() # meanr = np.mean(r[-1*vsample:]) # print 'Mean prediction corrcoef : %s' %(meanr) # model generation based on optimized CC number cc_num = 10 plsca = PLSCanonical(n_components=cc_num) plsca.fit(train_feat_ts, train_fmri_ts) from sklearn.externals import joblib joblib.dump(plsca, os.path.join(out_dir, 'plsca_model.pkl')) plsca = joblib.load(os.path.join(out_dir, 'plsca_model.pkl')) # calculate correlation coefficient between truth and prediction pred_fmri_ts = plsca.predict(val_feat_ts) fmri_pred_r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair') mask = vutil.data_swap(mask_file) vxl_idx = np.nonzero(mask.flatten()==1)[0] tmp = np.zeros_like(mask.flatten(), dtype=np.float64) tmp[vxl_idx] = fmri_pred_r tmp = tmp.reshape(mask.shape) vutil.save2nifti(tmp, os.path.join(out_dir, 'pred_fmri_r.nii.gz')) pred_feat_ts = pls_y_pred_x(plsca, val_fmri_ts) pred_feat_ts = pred_feat_ts.T.reshape(96, 14, 14, 540) np.save(os.path.join(out_dir, 'pred_feat.npy'), pred_feat_ts) # get PLS-CCA weights feat_cc, fmri_cc = plsca.transform(train_feat_ts, train_fmri_ts) np.save(os.path.join(out_dir, 'feat_cc.npy'), feat_cc) np.save(os.path.join(out_dir, 'fmri_cc.npy'), fmri_cc) feat_weight = plsca.x_weights_.reshape(96, 14, 14, cc_num) #feat_weight = plsca.x_weights_.reshape(96, 11, 11, cc_num) fmri_weight = plsca.y_weights_ np.save(os.path.join(out_dir, 'feat_weights.npy'), feat_weight) np.save(os.path.join(out_dir, 'fmri_weights.npy'), fmri_weight) fmri_orig_ccs = get_pls_components(plsca.y_scores_, plsca.y_loadings_) np.save(os.path.join(out_dir, 'fmri_orig_ccs.npy'), fmri_orig_ccs)
def channel_sim(feat_file): """Compute similarity between each pair of channels.""" feat = np.load(feat_file) print feat.shape feat = feat.reshape(96, 55, 55, 540) simmtx = np.zeros((feat.shape[0], feat.shape[0])) for i in range(feat.shape[0]): for j in range(i+1, feat.shape[0]): print '%s - %s' %(i, j) x = feat[i, :].reshape(-1, feat.shape[3]) y = feat[j, :].reshape(-1, feat.shape[3]) tmp = corr2_coef(x, y) tmp = tmp.diagonal() simmtx[i, j] = tmp.mean() np.save('sim_mtx.npy', simmtx) im = plt.imshow(simmtx, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar(im) plt.show()
def random_cross_modal_corr(fmri_ts, feat_ts, voxel_num, iter_num, filename): """Generate a random distribution of correlation corfficient.""" corr_mtx = np.memmap(filename, dtype='float16', mode='w+', shape=(voxel_num, iter_num)) print 'Compute cross-modality correlation ...' fmri_size = fmri_ts.shape[0] feat_size = feat_ts.shape[0] # select voxels and features randomly vxl_idx = np.random.choice(fmri_size, voxel_num, replace=False) feat_idx = np.random.choice(feat_size, voxel_num, replace=False) for i in range(voxel_num): print 'voxel index %s' % (vxl_idx[i]) print 'feature index %s' % (feat_idx[i]) feat_data = feat_ts[feat_idx[i], :].reshape(1, -1) fmri_data = np.zeros((iter_num, fmri_ts.shape[1])) for j in range(iter_num): fmri_data[j, :] = np.random.permutation(fmri_ts[vxl_idx[i]]) corr_mtx[i, :] = corr2_coef(feat_data, fmri_data) narray = np.array(corr_mtx) np.save(filename, narray)