コード例 #1
0
def inter_subj_cc_sim(subj1_id, subj2_id, subj_dir):
    """Compute inter-subjects CCs similarity."""
    subj1_dir = os.path.join(subj_dir, 'vS%s'%(subj1_id))
    subj2_dir = os.path.join(subj_dir, 'vS%s'%(subj2_id))
    #-- inter-channel similarity
    feat_weights_file1 = os.path.join(subj1_dir, 'plscca',
                                      'layer1', 'feat_weights.npy')
    feat_weights_file2 = os.path.join(subj2_dir, 'plscca',
                                      'layer1', 'feat_weights.npy')
    feat_cc_corr1 = np.load(feat_cc_corr_file1).reshape(96, 121, 10)
    feat_cc_corr2 = np.load(feat_cc_corr_file2).reshape(96, 121, 10)
    sim_mtx = np.zeros((960, 960))
    for i in  range(10):
        data1 = feat_cc_corr1[..., i]
        for j in range(10):
            data2 = feat_cc_corr2[..., j]
            tmp = corr2_coef(data1, data2)
            sim_mtx[i*96:(i+1)*96, j*96:(j+1)*96] = np.abs(tmp)
    np.save('feat_cc_weights_sim_subj_%s_%s.npy'%(subj1_id, subj2_id), sim_mtx)
    #-- inter-CC similarity
    #feat_cc_corr_file1 = os.path.join(subj1_dir, 'plscca',
    #                                  'layer1', 'feat_cc_corr.npy')
    #feat_cc_corr_file2 = os.path.join(subj2_dir, 'plscca',
    #                                  'layer1', 'feat_cc_corr.npy')
    #feat_cc_corr1 = np.load(feat_cc_corr_file1).reshape(96, 11, 11, 10)
    #feat_cc_corr2 = np.load(feat_cc_corr_file2).reshape(96, 11, 11, 10)
    #avg_weights1 = vutil.fweights_top_mean(feat_cc_corr1, 0.2)
    #avg_weights2 = vutil.fweights_top_mean(feat_cc_corr2, 0.2)
    #sim_mtx = corr2_coef(avg_weights1, avg_weights2)
    #np.save('feat_cc_sim_subj_%s_%s.npy'%(subj1_id, subj2_id), sim_mtx)
    pass
コード例 #2
0
def plscorr_eval(train_fmri_ts, train_feat_ts, val_fmri_ts, val_feat_ts,
                 out_dir, mask_file):
    """Compute PLS correlation between brain activity and CNN activation."""
    train_feat_ts = train_feat_ts.reshape(-1, train_feat_ts.shape[3]).T
    val_feat_ts = val_feat_ts.reshape(-1, val_feat_ts.shape[3]).T
    train_fmri_ts = train_fmri_ts.T
    val_fmri_ts = val_fmri_ts.T

    # Iteration loop for different component number
    #for n in range(5, 19):
    #    print '--- Components number %s ---' %(n)
    #    plsca = PLSCanonical(n_components=n)
    #    plsca.fit(train_feat_ts, train_fmri_ts)
    #    pred_feat_c, pred_fmri_c = plsca.transform(val_feat_ts, val_fmri_ts)
    #    pred_fmri_ts = plsca.predict(val_feat_ts) 
    #    # calculate correlation coefficient between truth and prediction
    #    r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair')
    #    # get top 20% corrcoef for model evaluation
    #    vsample = int(np.rint(0.2*len(r)))
    #    print 'Sample size for evaluation : %s' % (vsample)
    #    r.sort()
    #    meanr = np.mean(r[-1*vsample:])
    #    print 'Mean prediction corrcoef : %s' %(meanr)
    
    # model generation based on optimized CC number
    cc_num = 10
    plsca = PLSCanonical(n_components=cc_num)
    plsca.fit(train_feat_ts, train_fmri_ts)
    from sklearn.externals import joblib
    joblib.dump(plsca, os.path.join(out_dir, 'plsca_model.pkl'))
    plsca = joblib.load(os.path.join(out_dir, 'plsca_model.pkl'))

    # calculate correlation coefficient between truth and prediction
    pred_fmri_ts = plsca.predict(val_feat_ts)
    fmri_pred_r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair')
    mask = vutil.data_swap(mask_file)
    vxl_idx = np.nonzero(mask.flatten()==1)[0]
    tmp = np.zeros_like(mask.flatten(), dtype=np.float64)
    tmp[vxl_idx] = fmri_pred_r
    tmp = tmp.reshape(mask.shape)
    vutil.save2nifti(tmp, os.path.join(out_dir, 'pred_fmri_r.nii.gz'))
    pred_feat_ts = pls_y_pred_x(plsca, val_fmri_ts)
    pred_feat_ts = pred_feat_ts.T.reshape(96, 14, 14, 540)
    np.save(os.path.join(out_dir, 'pred_feat.npy'), pred_feat_ts)

    # get PLS-CCA weights
    feat_cc, fmri_cc = plsca.transform(train_feat_ts, train_fmri_ts)
    np.save(os.path.join(out_dir, 'feat_cc.npy'), feat_cc)
    np.save(os.path.join(out_dir, 'fmri_cc.npy'), fmri_cc)
    feat_weight = plsca.x_weights_.reshape(96, 14, 14, cc_num)
    #feat_weight = plsca.x_weights_.reshape(96, 11, 11, cc_num)
    fmri_weight = plsca.y_weights_
    np.save(os.path.join(out_dir, 'feat_weights.npy'), feat_weight)
    np.save(os.path.join(out_dir, 'fmri_weights.npy'), fmri_weight)
    fmri_orig_ccs = get_pls_components(plsca.y_scores_, plsca.y_loadings_)
    np.save(os.path.join(out_dir, 'fmri_orig_ccs.npy'), fmri_orig_ccs)
コード例 #3
0
def channel_sim(feat_file):
    """Compute similarity between each pair of channels."""
    feat = np.load(feat_file)
    print feat.shape
    feat = feat.reshape(96, 55, 55, 540)
    simmtx = np.zeros((feat.shape[0], feat.shape[0]))
    for i in range(feat.shape[0]):
        for j in range(i+1, feat.shape[0]):
            print '%s - %s' %(i, j)
            x = feat[i, :].reshape(-1, feat.shape[3])
            y = feat[j, :].reshape(-1, feat.shape[3])
            tmp = corr2_coef(x, y)
            tmp = tmp.diagonal()
            simmtx[i, j] = tmp.mean()
    np.save('sim_mtx.npy', simmtx)
    im = plt.imshow(simmtx, interpolation='nearest', cmap=plt.cm.ocean)
    plt.colorbar(im)
    plt.show()
コード例 #4
0
def random_cross_modal_corr(fmri_ts, feat_ts, voxel_num, iter_num, filename):
    """Generate a random distribution of correlation corfficient."""
    corr_mtx = np.memmap(filename,
                         dtype='float16',
                         mode='w+',
                         shape=(voxel_num, iter_num))
    print 'Compute cross-modality correlation ...'
    fmri_size = fmri_ts.shape[0]
    feat_size = feat_ts.shape[0]
    # select voxels and features randomly
    vxl_idx = np.random.choice(fmri_size, voxel_num, replace=False)
    feat_idx = np.random.choice(feat_size, voxel_num, replace=False)
    for i in range(voxel_num):
        print 'voxel index %s' % (vxl_idx[i])
        print 'feature index %s' % (feat_idx[i])
        feat_data = feat_ts[feat_idx[i], :].reshape(1, -1)
        fmri_data = np.zeros((iter_num, fmri_ts.shape[1]))
        for j in range(iter_num):
            fmri_data[j, :] = np.random.permutation(fmri_ts[vxl_idx[i]])
        corr_mtx[i, :] = corr2_coef(feat_data, fmri_data)
    narray = np.array(corr_mtx)
    np.save(filename, narray)