Exemple #1
0
    def initialise(self):
        loop = [Symbol('_'+x.name) for x in self.index]  # symbols for loop

        statements = []
        
        for field in self.fields:
            body = []
            if self.omp:
                statements.append(cgen.Pragma('omp for schedule(static,1)'))
            # populate xvalue, yvalue zvalue code
            for d in range(self.dimension-1, -1, -1):
                i = loop[d]
                i0 = 0
                i1 = ccode(self.dim[d])
                pre = []
                #velocity_initialisation = cgen.Assign(ccode())
                post = []
                if d == self.dimension-1:
                    # inner loop
                    # first time step
                    t0 = 0
                    sol = field.sol.subs(self.t, t0)
                    for idx in self.index:
                        sol = sol.subs(idx, '_'+idx.name)
                    body = [cgen.Assign(ccode(field[[0]+loop]), ccode(sol))]
                body = pre + body + post
                body = [cgen.For(cgen.InlineInitializer(cgen.Value('int', i), i0), cgen.Line('%s<%s' % (i, i1)), cgen.Line('++%s' % i), cgen.Block(body))]

            statements.append(body[0])
            statements += self.generate_second_initialisation()
            
            
        return cgen.Module(statements)
Exemple #2
0
 def save_field_block(self, filename, field):
     statements = []
     statements.append(cgen.Initializer(cgen.Value("int", "dims[]"), "{dim1, dim1, dim1}"))
     statements.append(cgen.Initializer(cgen.Value("float", "spacing[]"), "{dx1, dx2, dx3}"))
     statements.append(cgen.Assign("std::string vtkfile", "\""+filename+"\" + std::to_string(_ti)"))
     statements.append(cgen.Statement("opesci_dump_field_vts_3d(vtkfile, dims, spacing, 2, &"+field+"["+ccode(self.time[len(self.time)-1])+"][0][0][0])"))
     return cgen.Module([cgen.Pragma("omp single"), cgen.Block(statements)])
Exemple #3
0
    def generate_second_initialisation(self):
        loop = [Symbol('_'+x.name) for x in self.index]  # symbols for loop
        m = self.margin.value
        statements = []
        v = symbols("v")
        for field in self.fields:
            body = []
            if self.omp:
                statements.append(cgen.Pragma('omp for schedule(static,1)'))
            # populate xvalue, yvalue zvalue code
            for d in range(self.dimension-1, -1, -1):
                i = loop[d]
                i0 = m
                i1 = ccode(self.dim[d]-m)
                pre = []

                post = []
                if d == self.dimension-1:
                    # inner loop
                    # first time step
                    kernel = self.transform_kernel(field)
                    for arg in kernel.args:
                        if str(arg).startswith("-") and str(self.t - 1) in str(arg):
                            kernel = kernel.subs({arg: 0}, simultaneous=True)
                            arg = 2*v*self.dt
                            kernel = 0.5*(kernel + arg)
                    kernel = kernel.subs({self.t: self.time[0]})
                    for idx in self.index:
                        kernel = kernel.subs(idx, '_'+idx.name)
                    body = [cgen.Assign(ccode(field[[self.time[1]]+loop]), ccode(kernel))]
                body = pre + body + post
                body = [cgen.For(cgen.InlineInitializer(cgen.Value('int', i), i0), cgen.Line('%s<%s' % (i, i1)), cgen.Line('++%s' % i), cgen.Block(body))]

            statements.append(body[0])
        return statements
Exemple #4
0
    def declare_fields(self):
        """
        - generate code for declaring fields
        - the generated code first declare fields as std::vector
        of size=vec_size, then cast to multidimensional array
        - return the generated code as string
        """
        result = []
        arr = ''  # = [dim1][dim2][dim3]...
        for d in self.dim:
            arr += '[' + d.name + ']'
        vsize = 1
        for d in self.dim:
            vsize *= d.value

        vsize *= len(self.time)
        statements = []
        for field in self.fields:
            vec = "_%s_vec" % ccode(field.label)
            vec_value = cgen.Pointer(cgen.Value(self.real_t, vec))
            # alloc aligned memory (on windows and linux)
            statements.append(vec_value)
            ifdef = cgen.IfDef('_MSC_VER', [cgen.Assign(vec, '(%s*) _aligned_malloc(%s*sizeof(%s), %s)' % (self.real_t, str(vsize), self.real_t, str(self.alignment)))],
                               [cgen.Statement('posix_memalign((void **)(&%s), %d, %d*sizeof(%s))' % (vec, self.alignment, vsize, self.real_t))])
            statements.append(ifdef)
            # cast pointer to multidimensional array
            cast_pointer = cgen.Initializer(cgen.Value(self.real_t, "(*%s)%s" % (ccode(field.label), arr)), '(%s (*)%s) %s' % (self.real_t, arr, vec))
            statements.append(cast_pointer)
        vec = "_%s_vec" % ccode("m")
        vec_value = cgen.Pointer(cgen.Value(self.real_t, vec))
        statements.append(vec_value)
        result += statements
        return cgen.Module(result)
Exemple #5
0
    def time_stepping(self):
        """
        generate time index variable for time stepping
        e.g. for 2nd order time-accurate scheme, varibales are t0, t1
        for 4th order time-accurate scheme, variables are t0, t1, t2, t3
        the variables are used to address the field arrays
        e.g. in 2nd order scheme, U[t1] will be updated using U[t0]
        the variables are calculated by taking mod with time periodicity
        return generated code as string
        """

        _ti = Symbol('_ti')
        body = []

        for i in range(len(self.time)):
            lhs = self.time[i].name
            if i == 0:
                rhs = ccode(_ti % self.tp)
            else:
                rhs = ccode((self.time[i-1]+1) % self.tp)
            body.append(cgen.Assign(lhs, rhs))

        body = cgen.Block(body)
        body = cgen.Module([cgen.Pragma('omp single'), body])
        return body
Exemple #6
0
    def store_fields(self):
        """Code fragment that stores field arrays to 'grid' struct"""
        result = []
        for f in self.fields:
            assignment = cgen.Assign('grid->%s' % ccode(f.label), '(%s*) %s' % (self.real_t, ccode(f.label)))  # There must be a better way of doing this. This hardly seems better than string manipulation
            result.append(assignment)

        return cgen.Module(result)
Exemple #7
0
 def simple_kernel(self, grid_field, indexes):
     """
     Generate the inner loop with all fields from stress or velocity
     :param grid_field: stress or velocity field array
     :param indexes: array with dimension, dimension var, initial margin, final margin
     - iterate through fields and replace mako template
     - return inner loop code as string
     """
     body = []
     idx = [self.time[len(self.time)-1]] + self.index
     # This loop create the most inner loop with all fields
     for field in grid_field:
         body.append(cgen.Assign(ccode(field[idx]), ccode(self.kernel_sympy(field))))
     body = [cgen.For(cgen.InlineInitializer(cgen.Value('int', indexes[1]), indexes[2]), cgen.Line('%s<%s' % (indexes[1], indexes[3])), cgen.Line('++%s' % indexes[1]), cgen.Block(body))]
     if not self.pluto and self.ivdep and indexes[0] == self.dimension-1:
         body.insert(0, self.compiler._ivdep)
     if not self.pluto and self.simd and indexes[0] == self.dimension-1:
         body.insert(0, cgen.Pragma('simd'))
     return body
Exemple #8
0
 def copy_memory(self):
     #data, rowcount, colcount
     
     vec = "_%s_vec" % ccode("m")
     statements = [cgen.Assign(vec, 'data')]
     return statements
Exemple #9
0
 def init_profiling(self):
     """Code fragment that initialises global PAPI counters and events"""
     code = [cgen.Assign('profiling->g_%s' % v, 0.0) for v in ['rtime', 'ptime', 'mflops']]
     code += [cgen.Assign('profiling->g_%s' % e, 0) for e in self._papi_events]
     return cgen.Module(code)