def test(model_name='model.pkl'): cnn = CNN() cnn.eval() cnn.load_state_dict(torch.load(model_name)) print('load cnn net.') test_dataloader = dataset.get_test_data_loader() correct = 0 total = 0 for i, (images, labels) in enumerate(test_dataloader): image = images vimage = Variable(image) predict_label = cnn(vimage) chars = '' for i in range(setting.MAX_CAPTCHA): chars += setting.ALL_CHAR_SET[np.argmax( predict_label[0, i * setting.ALL_CHAR_SET_LEN:(i + 1) * setting.ALL_CHAR_SET_LEN].data.numpy())] predict_label = chars true_label = one_hot.decode(labels.numpy()[0]) total += labels.size(0) if (predict_label == true_label): correct += 1 else: print('Predict:' + predict_label) print('Real :' + true_label) if (total % 200 == 0): print('Test Accuracy of the model on the %d test images: %f %%' % (total, 100 * correct / total)) print('Test Accuracy of the model on the %d test images: %f %%' % (total, 100 * correct / total))
def main(): # Load net cnn = CNN() loss_func = nn.MultiLabelSoftMarginLoss() optimizer = optim.Adam(cnn.parameters(), lr=learning_rate) if torch.cuda.is_available(): cnn.cuda() loss_func.cuda() # Load data train_dataloader = dataset.get_train_data_loader() test_dataloader = dataset.get_test_data_loader() # Train model for epoch in range(num_epochs): cnn.train() for i, (images, labels) in enumerate(train_dataloader): images = Variable(images) labels = Variable(labels.long()) if torch.cuda.is_available(): images = images.cuda() labels = labels.cuda() predict_labels = cnn(images) loss = loss_func(predict_labels, labels) optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: print("epoch:", epoch, "step:", i, "loss:", loss.item()) # Save and test model if (epoch + 1) % 10 == 0: filename = "model" + str(epoch + 1) + ".pkl" torch.save(cnn.state_dict(), filename) cnn.eval() correct = 0 total = 0 for (image, label) in test_dataloader: vimage = Variable(image) if torch.cuda.is_available(): vimage = vimage.cuda() output = cnn(vimage) predict_label = "" for k in range(4): predict_label += config.CHAR_SET[np.argmax( output[0, k * config.CHAR_SET_LEN:(k + 1) * config.CHAR_SET_LEN].data.cpu().numpy())] true_label = one_hot.vec2text(label.numpy()[0]) total += label.size(0) if predict_label == true_label: correct += 1 if total % 200 == 0: print( 'Test Accuracy of the model on the %d test images: %f %%' % (total, 100 * correct / total)) print('Test Accuracy of the model on the %d test images: %f %%' % (total, 100 * correct / total)) print("save and test model...") torch.save(cnn.state_dict(), "./model.pkl") # current is model.pkl print("save last model")
def main(): cnn = CNN() cnn.eval() cnn.load_state_dict(torch.load('model/1500_model.pkl')) print("load cnn net.") predict_dataloader = my_dataset.get_predict_data_loader() for i, (images, labels) in enumerate(predict_dataloader): image = images vimage = Variable(image) predict_label = cnn(vimage) c0 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 0:captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c1 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, captcha_setting.ALL_CHAR_SET_LEN:2 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c2 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 2 * captcha_setting.ALL_CHAR_SET_LEN:3 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c3 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 3 * captcha_setting.ALL_CHAR_SET_LEN:4 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c = '%s%s%s%s' % (c0, c1, c2, c3) return c
def main(): cnn = CNN() cnn.eval() cnn.load_state_dict(torch.load('model/1500_model.pkl')) print("load cnn net.") test_dataloader = my_dataset.get_test_data_loader() correct = 0 total = 0 error = [] true = [] for i, (images, labels) in enumerate(test_dataloader): image = images vimage = Variable(image) predict_label = cnn(vimage) c0 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 0:captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c1 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, captcha_setting.ALL_CHAR_SET_LEN:2 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c2 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 2 * captcha_setting.ALL_CHAR_SET_LEN:3 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c3 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 3 * captcha_setting.ALL_CHAR_SET_LEN:4 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] predict_label = '%s%s%s%s' % (c0, c1, c2, c3) true_label = one_hot_encoding.decode(labels.numpy()[0]) print("true_label: ", true_label) print("predict_lable: ", predict_label, "\n") total += labels.size(0) if (predict_label == true_label): correct += 1 else: error.append(predict_label) true.append(true_label) if (total % 200 == 0): print('测试集数量:%d, 准确率 : %f %%' % (total, 100 * correct / total)) print('测试集数量:%d, 准确率 : %f %%' % (total, 100 * correct / total)) print('预测错误例子:\n') print('正确字符:', true) print('错误字符:', error)
def main(): args = parse_args() twitter_csv_path = args.tweet_csv_file device_type = args.device use_bert = False shuffle = False train_data, dev_data, test_data = load_twitter_data(twitter_csv_path, test_split_percent=0.1, val_split_percent=0.2, overfit=True, shuffle=shuffle, use_bert=use_bert, overfit_val=12639) vocab_size = train_data.vocab_size print(vocab_size) print(train_data.length) print(dev_data.length) print(test_data.length) cnn_net = CNN(vocab_size, DIM_EMB=300, NUM_CLASSES = 2) if device_type == "gpu" and torch.cuda.is_available(): device = torch.device('cuda:0') cnn_net = cnn_net.cuda() epoch_losses, eval_accuracy = train_network(cnn_net, train_data.Xwordlist, (train_data.labels + 1.0)/2.0, 10, dev_data, lr=0.003, batchSize=150, use_gpu=True, device=device) cnn_net.eval() print("Test Set") test_accuracy = eval_network(test_data, cnn_net, use_gpu=True, device=device) else: device = torch.device('cpu') epoch_losses, eval_accuracy = train_network(cnn_net, train_data.Xwordlist, (train_data.labels + 1.0)/2.0, 10, dev_data, lr=0.003, batchSize=150, use_gpu=False, device=device) cnn_net.eval() print("Test Set") test_accuracy = eval_network(test_data, cnn_net, use_gpu=False, batch_size=batchSize, device=device) # plot_accuracy((min_accs, eval_accuracy, max_accs), "Sentiment CNN lr=0.001", train_data.length) plot_accuracy(eval_accuracy, "Sentiment CNN lr=0.003", train_data.length) plot_losses(epoch_losses, "Sentiment CNN lr=0.003", train_data.length) torch.save(cnn_net.state_dict(), "saved_models\\cnn.pth") np.save("cnn_train_loss_" + str(train_data.length) + ".npy", np.array(epoch_losses)) np.save("cnn_validation_accuracy_" + str(train_data.length) + ".npy", np.array(eval_accuracy))
def recognize(model_name='model.pk'): cnn = CNN() cnn.eval() cnn.load_state_dict(torch.load(model_name)) # print(load cnn net.) # NUM_LEN = len(setting.NUMBER) captcha_dataloader = dataset.get_captcha_data_loader() code = '' images = {} for image, label in captcha_dataloader: images[label] = image images = [images[key] for key in sorted(images)] for image in images: vimage = Variable(image) predict_label = cnn(vimage) for i in range(setting.MAX_CAPTCHA): code += setting.ALL_CHAR_SET[np.argmax( predict_label[0, i * setting.ALL_CHAR_SET_LEN:(i + 1) * setting.ALL_CHAR_SET_LEN].data.numpy())] return code
def main(): args = parse_args() # twitter_csv_path = args.tweet_csv_file labeled_twitter_csv_path = args.labeled_tweet_csv_file unlabeled_twitter_csv_path = args.unlabeled_tweet_csv_file device_type = args.device acquistion_function_type = args.acquisition_func human_label = args.human_label use_model_acq = True #flag for using model to generate inputs for acquisition funciton if acquistion_function_type == "least_confidence": acquisition_func = least_confidence elif acquistion_function_type == "random": acquisition_func = random_score elif acquistion_function_type == "entropy": acquisition_func = entropy_score elif acquistion_function_type == "tweet_count": acquisition_func = tweet_count_norm use_model_acq = False else: acquisition_func = least_confidence seed_data_size = args.seed_data_size use_bert = False shuffle = False train_data, dev_data, test_data = load_twitter_data( labeled_twitter_csv_path, test_split_percent=0.1, val_split_percent=0.2, shuffle=shuffle, overfit=True, use_bert=use_bert, overfit_val=40000) unlabeled_tweets, ground_truth_labels = load_unlabeled_tweet_csv( unlabeled_twitter_csv_path, num_tweets=45000) #convert "unlabeled" tweets to token ids X_unlabeled = train_data.convert_text_to_ids(unlabeled_tweets) # ground_truth_labels = ground_truth_labels[0:70000] ground_truth_labels = (ground_truth_labels + 1.0) / 2.0 X_seed = train_data.Xwordlist[0:seed_data_size] Y_seed = train_data.labels[0:seed_data_size] Y_seed = (Y_seed + 1.0) / 2.0 print(train_data.vocab_size) print(len(X_seed)) print(dev_data.length) print(test_data.length) num_samples = args.sample_size cnn_net = CNN(train_data.vocab_size, DIM_EMB=300, NUM_CLASSES=2) if device_type == "gpu" and torch.cuda.is_available(): device = torch.device('cuda:0') cnn_net = cnn_net.cuda() epoch_losses, eval_accuracy, hand_labeled_data = train_active_learning( cnn_net, train_data, X_seed, Y_seed, X_unlabeled, ground_truth_labels, dev_data, use_model=use_model_acq, num_epochs=8, human_label=human_label, acquisition_func=acquisition_func, lr=0.0035, batchSize=150, num_samples=num_samples, use_gpu=True, device=device) cnn_net.eval() print("Test Set") test_accuracy = eval_network(test_data, cnn_net, use_gpu=True, device=device) else: device = torch.device('cpu') # cnn_net = cnn_net.cuda() epoch_losses, eval_accuracy, hand_labeled_data = train_active_learning( cnn_net, train_data, X_seed, Y_seed, X_unlabeled, ground_truth_labels, dev_data, use_model=use_model_acq, num_epochs=8, human_label=human_label, acquisition_func=acquisition_func, lr=0.0035, batchSize=150, num_samples=num_samples, use_gpu=False, device=device) cnn_net.eval() print("Test Set") test_accuracy = eval_network(test_data, cnn_net, use_gpu=False, device=device) # plot_accuracy((min_accs, eval_accuracy, max_accs), "Sentiment CNN lr=0.001", train_data.length) plot_accuracy( eval_accuracy, "Sentiment CNN (Active Learning) lr=0.0035 " + acquistion_function_type, seed_data_size) # plot_losses(epoch_losses, "Sentiment CNN (Active Learning) lr=0.0030" + acquistion_function_type, train_data.length) torch.save(cnn_net.state_dict(), "saved_models\\cnn_active_learn.pth") # np.save("cnn_active_learning_train_loss" + acquistion_function_type + "_" + str(seed_data_size) + ".npy", np.array(epoch_losses)) np.save( "human_labelling_results/cnn_active_learning_validation_accuracy_" + acquistion_function_type + "_" + str(seed_data_size) + "_" + str(num_samples) + ".npy", np.array(eval_accuracy)) human_labels = [] ground_truth_labels = [] tweets = [] save_labels = True if save_labels: for tweet, label, ground_truth_label in hand_labeled_data: # tweet, score = sample tweet = train_data.convert_to_words(tweet) tweets.append(tweet) human_labels.append(label) ground_truth_labels.append(ground_truth_label) new_labeled_tweets = pd.DataFrame({ 'label': human_labels, 'ground truth': ground_truth_labels, 'text': tweets }) new_labeled_tweets.to_csv("human_labeled_tweets_lc_rk.csv", header=True, index=False)
def main(): #parameters # sampling_functions = ['random_score', 'entropy_score', 'least_confidence'] sampling_functions = ['tweet_count'] sampling_sizes = [5000, 10000, 15000, 20000] num_active_samples = [10, 25, 50] # sampling_functions = ['least_confidence'] # num_active_samples = [25, 50] # sampling_sizes = [20000] args = parse_args() # twitter_csv_path = args.tweet_csv_file labeled_twitter_csv_path = args.labeled_tweet_csv_file unlabeled_twitter_csv_path = args.unlabeled_tweet_csv_file save_models = args.save_models use_bert = False shuffle = False train_data, dev_data, test_data = load_twitter_data(labeled_twitter_csv_path, test_split_percent=0.1, val_split_percent=0.2, shuffle=shuffle, overfit=True, use_bert=use_bert, overfit_val=40000) unlabeled_tweets, ground_truth_labels = load_unlabeled_tweet_csv(unlabeled_twitter_csv_path, num_tweets=45000) X_unlabeled = train_data.convert_text_to_ids(unlabeled_tweets) ground_truth_labels = ground_truth_labels ground_truth_labels = (ground_truth_labels + 1.0)/2.0 test_accuracies = {} print("Running ablation experiment on sampling functions and seed sizes") use_model=True for af in sampling_functions: if af == 'random_score': acquisition_func = random_score elif af == 'entropy_score': acquisition_func = entropy_score elif af == 'least_confidence': acquisition_func = least_confidence elif af == 'tweet_count': acquisition_func = tweet_count_norm use_model=False for seed_data_size in sampling_sizes: for sample_size in num_active_samples: param_combo = "Acquisition_Func: " + af + " Seed Size: " + str(seed_data_size) + " Sample Size: " + str(sample_size) print(param_combo + "\n") X_seed = train_data.Xwordlist[0:seed_data_size] Y_seed = train_data.labels[0:seed_data_size] Y_seed = (Y_seed + 1.0)/2.0 cnn_net = CNN(train_data.vocab_size, DIM_EMB=300, NUM_CLASSES = 2) device = torch.device('cuda:0') cnn_net = cnn_net.cuda() print("Train active learning") epoch_losses, eval_accuracy, hand_labeled_data = train_active_learning(cnn_net, train_data, X_seed, Y_seed, copy.deepcopy(X_unlabeled), np.copy(ground_truth_labels), dev_data, num_epochs=8, use_model=use_model, acquisition_func=acquisition_func, lr=0.0035, batchSize=150, num_samples=sample_size, use_gpu=True, device=device) print("Finished Training") cnn_net.eval() print("Test Set") test_accuracy = eval_network(test_data, cnn_net, use_gpu=True, device=device) model_save_path = "model_weights/cnn_active_learn_weights_"+ af + "_" + str(seed_data_size) + "_" + str(sample_size) + ".pth" if save_models: torch.save(cnn_net.state_dict(), model_save_path) param_combo = "CNN Active Learning: " + " Acquisition_Func: " + af + " Seed Size: " + str(seed_data_size) + " Sample Size: " + str(sample_size) test_accuracies[param_combo] = test_accuracy filename = "results_ablation/cnn_active_learning_val_accuracy_" + af + "_" + str(seed_data_size) + "_" + str(sample_size) + ".npy" np.save(filename, np.array(eval_accuracy)) print("Finished experiments") with open("ablation_test_accuracies1.txt", "w") as f: for key in test_accuracies.keys(): accuracy = test_accuracies[key] line = key + " Acc: " + str(accuracy) + "\n" f.write(line)
def train(): """ Performs training and evaluation of MLP cnn. NOTE: You should the cnn on the whole test set each eval_freq iterations. """ # YOUR TRAINING CODE GOES HERE transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_data = datasets.CIFAR10('data', train=True, download=True, transform=transform) test_data = datasets.CIFAR10('data', train=False, download=True, transform=transform) train_on_gpu = torch.cuda.is_available() num_train = len(train_data) train_loader = torch.utils.data.DataLoader(train_data, batch_size=FLAGS.batch_size, shuffle=True, num_workers=0) test_loader = torch.utils.data.DataLoader(test_data, batch_size=FLAGS.batch_size, shuffle=False, num_workers=0) classes = [ 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck' ] cnn = CNN(3, 10) if train_on_gpu: cnn.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(cnn.parameters(), lr=FLAGS.learning_rate) for epoch in range(1, FLAGS.max_steps): class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) train_loss = 0.0 test_loss = 0.0 cnn.train() for data, target in train_loader: if train_on_gpu: data, target = data.cuda(), target.cuda() optimizer.zero_grad() output = cnn(data) loss = criterion(output, target) loss.backward() optimizer.step() _, pred = torch.max(output, 1) correct_tensor = pred.eq(target.data.view_as(pred)) train_loss += loss.item() * data.size(0) correct = np.squeeze( correct_tensor.numpy()) if not train_on_gpu else np.squeeze( correct_tensor.cpu().numpy()) for i in range(len(target.data)): label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 if epoch % FLAGS.eval_freq == 0: test_correct = list(0. for i in range(10)) test_total = list(0. for i in range(10)) cnn.eval() for data, target in test_loader: if train_on_gpu: data, target = data.cuda(), target.cuda() output = cnn(data) _, pred = torch.max(output, 1) correct_tensor = pred.eq(target.data.view_as(pred)) correct = np.squeeze(correct_tensor.numpy() ) if not train_on_gpu else np.squeeze( correct_tensor.cpu().numpy()) loss = criterion(output, target) test_loss += loss.item() * data.size(0) for i in range(len(target.data)): label = target.data[i] test_correct[label] += correct[i].item() test_total[label] += 1 train_loss = train_loss / len(train_loader.dataset) test_loss = test_loss / len(test_loader.dataset) plot_epoch.append(epoch) plot_train_loss.append(train_loss) plot_test_loss.append(test_loss) print( 'Epoch: {} \tTraining Loss: {:.6f} \tTest Loss: {:.6f}'.format( epoch, train_loss, test_loss)) percent_train = accuracy(class_correct, class_total) * 100 percent_test = accuracy(test_correct, test_total) * 100 plot_train_accuracy.append(percent_train) plot_test_accuracy.append(percent_test) print('train accuracy: ', percent_train, 'test accuracy: ', percent_test) fig1 = plt.subplot(2, 1, 1) fig2 = plt.subplot(2, 1, 2) fig1.plot(plot_epoch, plot_train_accuracy, c='red', label='training data accuracy') fig1.plot(plot_epoch, plot_test_accuracy, c='blue', label='test data accuracy') fig1.legend() fig2.plot(plot_epoch, plot_train_loss, c='green', label='train CE loss') fig2.plot(plot_epoch, plot_test_loss, c='yellow', label='test CE loss') fig2.legend() plt.show()