mimg = MoleImages()
    X_test, y_test = mimg.load_test_images('data_scaled_test/benign',
                                            'data_scaled_test/malign')

    mycnn = CNN()
    train_datagen = ImageDataGenerator(
    vertical_flip=True,
    horizontal_flip=True)
    test_datagen = ImageDataGenerator()

    train_generator = train_datagen.flow_from_directory(
        train_data_dir,
        target_size=(128, 128),
        batch_size=batch_size,
        class_mode='binary')

    validation_generator = test_datagen.flow_from_directory(
        validation_data_dir,
        target_size=(128, 128),
        batch_size=batch_size,
        class_mode='binary')

    model = mycnn.fit_generator(train_generator,validation_generator,
        nb_train_samples, nb_validation_samples, epochs, batch_size)

    model.save('models/mymodel-3.h5')
    y_pred_proba = model.predict(X_test)
    y_pred = (y_pred_proba >0.5)*1
    print(classification_report(y_test,y_pred))
    plot_roc(y_test, y_pred_proba, title='ROC Curve CNN from scratch')
    validation_generator = test_datagen.flow_from_directory(
        validation_data_dir,
        target_size=(128, 128),
        batch_size=batch_size,
        class_mode='binary')

    best_model_VA = ModelCheckpoint('BM_VA_' + model_path,
                                    monitor='val_acc',
                                    mode='max',
                                    verbose=1,
                                    save_best_only=True)
    best_model_VL = ModelCheckpoint('BM_VL_' + model_path,
                                    monitor='val_loss',
                                    mode='min',
                                    verbose=1,
                                    save_best_only=True)

    model = mycnn.fit_generator(train_generator,
                                validation_generator,
                                10 * nb_train_samples,
                                nb_validation_samples,
                                epochs,
                                batch_size,
                                callbacks=[best_model_VA, best_model_VL])

    model.save(model_path)
    #y_pred_proba = model.predict(X_test)
    #y_pred = (y_pred_proba >0.5)*1
    #print(classification_report(y_test,y_pred))
    #plot_roc(y_test, y_pred_proba, title='ROC Curve CNN from scratch')