def main(argv=None): parser = argparse.ArgumentParser(description='ML DataProc Setup') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone for GCE VMs.') parser.add_argument('--name', type=str, help='The name of the cluster to create.') parser.add_argument('--staging', type=str, help='GCS path to use for staging.') parser.add_argument('--output-dir-uri-output-path', type=str, default='/output.txt', help='Local output path for the file containing the output dir URI.') args = parser.parse_args() code_path = os.path.dirname(os.path.realpath(__file__)) init_file_source = os.path.join(code_path, 'initialization_actions.sh') dest_files = _utils.copy_resources_to_gcs([init_file_source], args.staging) try: api = _utils.get_client() print('Creating cluster...') create_response = _utils.create_cluster(api, args.project, args.region, args.name, dest_files[0]) print('Cluster creation request submitted. Waiting for completion...') _utils.wait_for_operation(api, create_response['name']) Path(args.output_dir_uri_output_path).parent.mkdir(parents=True, exist_ok=True) Path(args.output_dir_uri_output_path).write_text(args.output) print('Cluster created.') finally: _utils.remove_resources_from_gcs(dest_files)
def main(argv=None): parser = argparse.ArgumentParser(description='ML DataProc Setup') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone for GCE VMs.') parser.add_argument('--name', type=str, help='The name of the cluster to create.') parser.add_argument('--staging', type=str, help='GCS path to use for staging.') args = parser.parse_args() code_path = os.path.dirname(os.path.realpath(__file__)) dirname = os.path.basename(__file__).split('.')[0] init_file_source = os.path.join(code_path, dirname, 'initialization_actions.sh') dest_files = _utils.copy_resources_to_gcs([init_file_source], args.staging) try: api = _utils.get_client() print('Creating cluster...') create_response = _utils.create_cluster(api, args.project, args.region, args.name, dest_files[0]) print('Cluster creation request submitted. Waiting for completion...') _utils.wait_for_operation(api, create_response['name']) with open('/output.txt', 'w') as f: f.write(args.name) print('Cluster created.') finally: _utils.remove_resources_from_gcs(dest_files)
def main(argv=None): parser = argparse.ArgumentParser(description='ML Analyzer') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--train', type=str, help='GCS path of the training csv file.') parser.add_argument('--schema', type=str, help='GCS path of the json schema file.') parser.add_argument('--output-dir-uri-output-path', type=str, default='/output.txt', help='Local output path for the file containing the output dir URI.') args = parser.parse_args() code_path = os.path.dirname(os.path.realpath(__file__)) runfile_source = os.path.join(code_path, 'analyze_run.py') dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output) try: api = _utils.get_client() print('Submitting job...') spark_args = ['--output', args.output, '--train', args.train, '--schema', args.schema] job_id = _utils.submit_pyspark_job( api, args.project, args.region, args.cluster, dest_files[0], spark_args) print('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) Path(args.output_dir_uri_output_path).parent.mkdir(parents=True, exist_ok=True) Path(args.output_dir_uri_output_path).write_text(args.output) print('Job completed.') finally: _utils.remove_resources_from_gcs(dest_files)
def main(argv=None): parser = argparse.ArgumentParser(description='ML Analyzer') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--train', type=str, help='GCS path of the training csv file.') parser.add_argument('--schema', type=str, help='GCS path of the json schema file.') args = parser.parse_args() code_path = os.path.dirname(os.path.realpath(__file__)) dirname = os.path.basename(__file__).split('.')[0] runfile_source = os.path.join(code_path, dirname, 'run.py') dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output) try: api = _utils.get_client() print('Submitting job...') spark_args = [ '--output', args.output, '--train', args.train, '--schema', args.schema ] job_id = _utils.submit_pyspark_job(api, args.project, args.region, args.cluster, dest_files[0], spark_args) print('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) with open('/output.txt', 'w') as f: f.write(args.output) print('Job completed.') finally: _utils.remove_resources_from_gcs(dest_files)
def main(argv=None): parser = argparse.ArgumentParser(description='ML Transfomer') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--train', type=str, help='GCS path of the training csv file.') parser.add_argument('--eval', type=str, help='GCS path of the eval csv file.') parser.add_argument('--analysis', type=str, help='GCS path of the analysis results.') parser.add_argument('--target', type=str, help='Target column name.') args = parser.parse_args() # Remove existing [output]/train and [output]/eval if they exist. # It should not be done in the run time code because run time code should be portable # to on-prem while we need gsutil here. _utils.delete_directory_from_gcs(os.path.join(args.output, 'train')) _utils.delete_directory_from_gcs(os.path.join(args.output, 'eval')) code_path = os.path.dirname(os.path.realpath(__file__)) dirname = os.path.basename(__file__).split('.')[0] runfile_source = os.path.join(code_path, dirname, 'run.py') dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output) try: api = _utils.get_client() print('Submitting job...') spark_args = [ '--output', args.output, '--analysis', args.analysis, '--target', args.target ] if args.train: spark_args.extend(['--train', args.train]) if args.eval: spark_args.extend(['--eval', args.eval]) job_id = _utils.submit_pyspark_job(api, args.project, args.region, args.cluster, dest_files[0], spark_args) print('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) with open('/output_train.txt', 'w') as f: f.write(os.path.join(args.output, 'train', 'part-*')) with open('/output_eval.txt', 'w') as f: f.write(os.path.join(args.output, 'eval', 'part-*')) print('Job completed.') finally: _utils.remove_resources_from_gcs(dest_files)