Пример #1
0
def main(argv=None):
  parser = argparse.ArgumentParser(description='ML DataProc Setup')
  parser.add_argument('--project', type=str, help='Google Cloud project ID to use.')
  parser.add_argument('--region', type=str, help='Which zone for GCE VMs.')
  parser.add_argument('--name', type=str, help='The name of the cluster to create.')
  parser.add_argument('--staging', type=str, help='GCS path to use for staging.')
  parser.add_argument('--output-dir-uri-output-path',
                      type=str,
                      default='/output.txt',
                      help='Local output path for the file containing the output dir URI.')
  args = parser.parse_args()

  code_path = os.path.dirname(os.path.realpath(__file__))
  init_file_source = os.path.join(code_path, 'initialization_actions.sh')
  dest_files = _utils.copy_resources_to_gcs([init_file_source], args.staging)

  try:
    api = _utils.get_client()
    print('Creating cluster...')
    create_response = _utils.create_cluster(api, args.project, args.region, args.name, dest_files[0])
    print('Cluster creation request submitted. Waiting for completion...')
    _utils.wait_for_operation(api, create_response['name'])
    Path(args.output_dir_uri_output_path).parent.mkdir(parents=True, exist_ok=True)
    Path(args.output_dir_uri_output_path).write_text(args.output)
    print('Cluster created.')
  finally:
    _utils.remove_resources_from_gcs(dest_files)
Пример #2
0
def main(argv=None):
    parser = argparse.ArgumentParser(description='ML DataProc Setup')
    parser.add_argument('--project',
                        type=str,
                        help='Google Cloud project ID to use.')
    parser.add_argument('--region', type=str, help='Which zone for GCE VMs.')
    parser.add_argument('--name',
                        type=str,
                        help='The name of the cluster to create.')
    parser.add_argument('--staging',
                        type=str,
                        help='GCS path to use for staging.')
    args = parser.parse_args()

    code_path = os.path.dirname(os.path.realpath(__file__))
    dirname = os.path.basename(__file__).split('.')[0]
    init_file_source = os.path.join(code_path, dirname,
                                    'initialization_actions.sh')
    dest_files = _utils.copy_resources_to_gcs([init_file_source], args.staging)

    try:
        api = _utils.get_client()
        print('Creating cluster...')
        create_response = _utils.create_cluster(api, args.project, args.region,
                                                args.name, dest_files[0])
        print('Cluster creation request submitted. Waiting for completion...')
        _utils.wait_for_operation(api, create_response['name'])
        with open('/output.txt', 'w') as f:
            f.write(args.name)
        print('Cluster created.')
    finally:
        _utils.remove_resources_from_gcs(dest_files)
Пример #3
0
def main(argv=None):
  parser = argparse.ArgumentParser(description='ML Analyzer')
  parser.add_argument('--project', type=str, help='Google Cloud project ID to use.')
  parser.add_argument('--region', type=str, help='Which zone to run the analyzer.')
  parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.')
  parser.add_argument('--output', type=str, help='GCS path to use for output.')
  parser.add_argument('--train', type=str, help='GCS path of the training csv file.')
  parser.add_argument('--schema', type=str, help='GCS path of the json schema file.')
  parser.add_argument('--output-dir-uri-output-path',
                      type=str,
                      default='/output.txt',
                      help='Local output path for the file containing the output dir URI.')
  args = parser.parse_args()

  code_path = os.path.dirname(os.path.realpath(__file__))
  runfile_source = os.path.join(code_path, 'analyze_run.py')
  dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output)
  try:
    api = _utils.get_client()
    print('Submitting job...')
    spark_args = ['--output', args.output, '--train', args.train, '--schema', args.schema]
    job_id = _utils.submit_pyspark_job(
        api, args.project, args.region, args.cluster, dest_files[0], spark_args)
    print('Job request submitted. Waiting for completion...')
    _utils.wait_for_job(api, args.project, args.region, job_id)
    Path(args.output_dir_uri_output_path).parent.mkdir(parents=True, exist_ok=True)
    Path(args.output_dir_uri_output_path).write_text(args.output)

    print('Job completed.')
  finally:
    _utils.remove_resources_from_gcs(dest_files)
Пример #4
0
def main(argv=None):
    parser = argparse.ArgumentParser(description='ML Analyzer')
    parser.add_argument('--project',
                        type=str,
                        help='Google Cloud project ID to use.')
    parser.add_argument('--region',
                        type=str,
                        help='Which zone to run the analyzer.')
    parser.add_argument('--cluster',
                        type=str,
                        help='The name of the cluster to run job.')
    parser.add_argument('--output',
                        type=str,
                        help='GCS path to use for output.')
    parser.add_argument('--train',
                        type=str,
                        help='GCS path of the training csv file.')
    parser.add_argument('--schema',
                        type=str,
                        help='GCS path of the json schema file.')
    args = parser.parse_args()

    code_path = os.path.dirname(os.path.realpath(__file__))
    dirname = os.path.basename(__file__).split('.')[0]
    runfile_source = os.path.join(code_path, dirname, 'run.py')
    dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output)
    try:
        api = _utils.get_client()
        print('Submitting job...')
        spark_args = [
            '--output', args.output, '--train', args.train, '--schema',
            args.schema
        ]
        job_id = _utils.submit_pyspark_job(api, args.project, args.region,
                                           args.cluster, dest_files[0],
                                           spark_args)
        print('Job request submitted. Waiting for completion...')
        _utils.wait_for_job(api, args.project, args.region, job_id)
        with open('/output.txt', 'w') as f:
            f.write(args.output)

        print('Job completed.')
    finally:
        _utils.remove_resources_from_gcs(dest_files)
Пример #5
0
def main(argv=None):
    parser = argparse.ArgumentParser(description='ML Transfomer')
    parser.add_argument('--project',
                        type=str,
                        help='Google Cloud project ID to use.')
    parser.add_argument('--region',
                        type=str,
                        help='Which zone to run the analyzer.')
    parser.add_argument('--cluster',
                        type=str,
                        help='The name of the cluster to run job.')
    parser.add_argument('--output',
                        type=str,
                        help='GCS path to use for output.')
    parser.add_argument('--train',
                        type=str,
                        help='GCS path of the training csv file.')
    parser.add_argument('--eval',
                        type=str,
                        help='GCS path of the eval csv file.')
    parser.add_argument('--analysis',
                        type=str,
                        help='GCS path of the analysis results.')
    parser.add_argument('--target', type=str, help='Target column name.')
    args = parser.parse_args()

    # Remove existing [output]/train and [output]/eval if they exist.
    # It should not be done in the run time code because run time code should be portable
    # to on-prem while we need gsutil here.
    _utils.delete_directory_from_gcs(os.path.join(args.output, 'train'))
    _utils.delete_directory_from_gcs(os.path.join(args.output, 'eval'))

    code_path = os.path.dirname(os.path.realpath(__file__))
    dirname = os.path.basename(__file__).split('.')[0]
    runfile_source = os.path.join(code_path, dirname, 'run.py')
    dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output)
    try:
        api = _utils.get_client()
        print('Submitting job...')
        spark_args = [
            '--output', args.output, '--analysis', args.analysis, '--target',
            args.target
        ]
        if args.train:
            spark_args.extend(['--train', args.train])
        if args.eval:
            spark_args.extend(['--eval', args.eval])

        job_id = _utils.submit_pyspark_job(api, args.project, args.region,
                                           args.cluster, dest_files[0],
                                           spark_args)
        print('Job request submitted. Waiting for completion...')
        _utils.wait_for_job(api, args.project, args.region, job_id)

        with open('/output_train.txt', 'w') as f:
            f.write(os.path.join(args.output, 'train', 'part-*'))
        with open('/output_eval.txt', 'w') as f:
            f.write(os.path.join(args.output, 'eval', 'part-*'))

        print('Job completed.')
    finally:
        _utils.remove_resources_from_gcs(dest_files)