def container_add(container_id, ip, interface):
    """
    Add a container (on this host) to Calico networking with the given IP.

    :param container_id: The namespace path or the docker name/ID of the container.
    :param ip: An IPAddress object with the desired IP to assign.
    :param interface: The name of the interface in the container.
    """
    # The netns manipulations must be done as root.
    enforce_root()

    if container_id.startswith("/") and os.path.exists(container_id):
        # The ID is a path. Don't do any docker lookups
        workload_id = escape_etcd(container_id)
        orchestrator_id = NAMESPACE_ORCHESTRATOR_ID
        namespace = netns.Namespace(container_id)
    else:
        info = get_container_info_or_exit(container_id)
        workload_id = info["Id"]
        orchestrator_id = DOCKER_ORCHESTRATOR_ID
        namespace = netns.PidNamespace(info["State"]["Pid"])

        # Check the container is actually running.
        if not info["State"]["Running"]:
            print "%s is not currently running." % container_id
            sys.exit(1)

        # We can't set up Calico if the container shares the host namespace.
        if info["HostConfig"]["NetworkMode"] == "host":
            print "Can't add %s to Calico because it is " \
                  "running NetworkMode = host." % container_id
            sys.exit(1)

    # Check if the container already exists
    try:
        _ = client.get_endpoint(hostname=hostname,
                                orchestrator_id=orchestrator_id,
                                workload_id=workload_id)
    except KeyError:
        # Calico doesn't know about this container.  Continue.
        pass
    else:
        # Calico already set up networking for this container.  Since we got
        # called with an IP address, we shouldn't just silently exit, since
        # that would confuse the user: the container would not be reachable on
        # that IP address.
        print "%s has already been configured with Calico Networking." % \
              container_id
        sys.exit(1)

    # Check the IP is in the allocation pool.  If it isn't, BIRD won't export
    # it.
    ip = IPAddress(ip)
    pool = get_pool_or_exit(ip)

    # The next hop IPs for this host are stored in etcd.
    next_hops = client.get_default_next_hops(hostname)
    try:
        next_hops[ip.version]
    except KeyError:
        print "This node is not configured for IPv%d." % ip.version
        sys.exit(1)

    # Assign the IP
    if not client.assign_address(pool, ip):
        print "IP address is already assigned in pool %s " % pool
        sys.exit(1)

    # Get the next hop for the IP address.
    next_hop = next_hops[ip.version]

    network = IPNetwork(IPAddress(ip))
    ep = Endpoint(hostname=hostname,
                  orchestrator_id=DOCKER_ORCHESTRATOR_ID,
                  workload_id=workload_id,
                  endpoint_id=uuid.uuid1().hex,
                  state="active",
                  mac=None)
    if network.version == 4:
        ep.ipv4_nets.add(network)
        ep.ipv4_gateway = next_hop
    else:
        ep.ipv6_nets.add(network)
        ep.ipv6_gateway = next_hop

    # Create the veth, move into the container namespace, add the IP and
    # set up the default routes.
    netns.create_veth(ep.name, ep.temp_interface_name)
    netns.move_veth_into_ns(namespace, ep.temp_interface_name, interface)
    netns.add_ip_to_ns_veth(namespace, ip, interface)
    netns.add_ns_default_route(namespace, next_hop, interface)

    # Grab the MAC assigned to the veth in the namespace.
    ep.mac = netns.get_ns_veth_mac(namespace, interface)

    # Register the endpoint with Felix.
    client.set_endpoint(ep)

    # Let the caller know what endpoint was created.
    return ep
def container_add(container_id, ip, interface):
    """
    Add a container (on this host) to Calico networking with the given IP.

    :param container_id: The namespace path or the docker name/ID of the container.
    :param ip: An IPAddress object with the desired IP to assign.
    :param interface: The name of the interface in the container.
    """
    # The netns manipulations must be done as root.
    enforce_root()

    # TODO: This section is redundant in container_add_ip and elsewhere
    if container_id.startswith("/") and os.path.exists(container_id):
        # The ID is a path. Don't do any docker lookups
        workload_id = escape_etcd(container_id)
        orchestrator_id = NAMESPACE_ORCHESTRATOR_ID
        namespace = netns.Namespace(container_id)
    else:
        info = get_container_info_or_exit(container_id)
        workload_id = info["Id"]
        orchestrator_id = DOCKER_ORCHESTRATOR_ID
        namespace = netns.PidNamespace(info["State"]["Pid"])

        # Check the container is actually running.
        if not info["State"]["Running"]:
            print_paragraph("%s is not currently running." % container_id)
            sys.exit(1)

        # We can't set up Calico if the container shares the host namespace.
        if info["HostConfig"]["NetworkMode"] == "host":
            print_paragraph("Can't add %s to Calico because it is "
                            "running NetworkMode = host." % container_id)
            sys.exit(1)

    # Check if the container already exists
    try:
        _ = client.get_endpoint(hostname=hostname,
                                orchestrator_id=orchestrator_id,
                                workload_id=workload_id)
    except KeyError:
        # Calico doesn't know about this container.  Continue.
        pass
    else:
        # Calico already set up networking for this container.  Since we got
        # called with an IP address, we shouldn't just silently exit, since
        # that would confuse the user: the container would not be reachable on
        # that IP address.
        print_paragraph("%s has already been configured with Calico "
                        "Networking." % container_id)
        sys.exit(1)

    ip, pool = get_ip_and_pool(ip)

    try:
        # The next hop IPs for this host are stored in etcd.
        next_hops = client.get_default_next_hops(hostname)
        next_hops[ip.version]
    except KeyError:
        print_paragraph("This node is not configured for IPv%d.  "
                        "Is calico-node running?" % ip.version)
        unallocated_ips = client.release_ips({ip})
        if unallocated_ips:
            print_paragraph("Error during cleanup. %s was already"
                            "unallocated." % ip)
        sys.exit(1)

    # Get the next hop for the IP address.
    next_hop = next_hops[ip.version]

    network = IPNetwork(IPAddress(ip))
    ep = Endpoint(hostname=hostname,
                  orchestrator_id=DOCKER_ORCHESTRATOR_ID,
                  workload_id=workload_id,
                  endpoint_id=uuid.uuid1().hex,
                  state="active",
                  mac=None)
    if network.version == 4:
        ep.ipv4_nets.add(network)
        ep.ipv4_gateway = next_hop
    else:
        ep.ipv6_nets.add(network)
        ep.ipv6_gateway = next_hop

    # Create the veth, move into the container namespace, add the IP and
    # set up the default routes.
    netns.increment_metrics(namespace)
    netns.create_veth(ep.name, ep.temp_interface_name)
    netns.move_veth_into_ns(namespace, ep.temp_interface_name, interface)
    netns.add_ip_to_ns_veth(namespace, ip, interface)
    netns.add_ns_default_route(namespace, next_hop, interface)

    # Grab the MAC assigned to the veth in the namespace.
    ep.mac = netns.get_ns_veth_mac(namespace, interface)

    # Register the endpoint with Felix.
    client.set_endpoint(ep)

    # Let the caller know what endpoint was created.
    print_paragraph("IP %s added to %s" % (str(ip), container_id))
    return ep
def container_add(container_name, ip, interface):
    """
    Add a container (on this host) to Calico networking with the given IP.

    :param container_name: The name or ID of the container.
    :param ip: An IPAddress object with the desired IP to assign.
    :param interface: The name of the interface in the container.
    """
    # The netns manipulations must be done as root.
    enforce_root()
    info = get_container_info_or_exit(container_name)
    container_id = info["Id"]

    # Check if the container already exists
    try:
        _ = client.get_endpoint(hostname=hostname,
                                orchestrator_id=ORCHESTRATOR_ID,
                                workload_id=container_id)
    except KeyError:
        # Calico doesn't know about this container.  Continue.
        pass
    else:
        # Calico already set up networking for this container.  Since we got
        # called with an IP address, we shouldn't just silently exit, since
        # that would confuse the user: the container would not be reachable on
        # that IP address.
        print "%s has already been configured with Calico Networking." % \
              container_name
        sys.exit(1)

    # Check the container is actually running.
    if not info["State"]["Running"]:
        print "%s is not currently running." % container_name
        sys.exit(1)

    # We can't set up Calico if the container shares the host namespace.
    if info["HostConfig"]["NetworkMode"] == "host":
        print "Can't add %s to Calico because it is " \
              "running NetworkMode = host." % container_name
        sys.exit(1)

    # Check the IP is in the allocation pool.  If it isn't, BIRD won't export
    # it.
    ip = IPAddress(ip)
    pool = get_pool_or_exit(ip)

    # The next hop IPs for this host are stored in etcd.
    next_hops = client.get_default_next_hops(hostname)
    try:
        next_hops[ip.version]
    except KeyError:
        print "This node is not configured for IPv%d." % ip.version
        sys.exit(1)

    # Assign the IP
    if not client.assign_address(pool, ip):
        print "IP address is already assigned in pool %s " % pool
        sys.exit(1)

    # Get the next hop for the IP address.
    next_hop = next_hops[ip.version]

    network = IPNetwork(IPAddress(ip))
    ep = Endpoint(hostname=hostname,
                  orchestrator_id=ORCHESTRATOR_ID,
                  workload_id=container_id,
                  endpoint_id=uuid.uuid1().hex,
                  state="active",
                  mac=None)
    if network.version == 4:
        ep.ipv4_nets.add(network)
        ep.ipv4_gateway = next_hop
    else:
        ep.ipv6_nets.add(network)
        ep.ipv6_gateway = next_hop

    # Create the veth, move into the container namespace, add the IP and
    # set up the default routes.
    pid = info["State"]["Pid"]
    netns.create_veth(ep.name, ep.temp_interface_name)
    netns.move_veth_into_ns(pid, ep.temp_interface_name, interface)
    netns.add_ip_to_ns_veth(pid, ip, interface)
    netns.add_ns_default_route(pid, next_hop, interface)

    # Grab the MAC assigned to the veth in the namespace.
    ep.mac = netns.get_ns_veth_mac(pid, interface)

    # Register the endpoint with Felix.
    client.set_endpoint(ep)

    # Let the caller know what endpoint was created.
    return ep