cifar10 = cifar10_utils.get_cifar10('./cifar10/cifar-10-batches-py') print('done getting cifar10') image_shape = cifar10.train.images.shape[1:4] num_classes = cifar10.test.labels.shape[1] # Construct linear convnet graph x = tf.placeholder(tf.float32, shape=[None] + list(image_shape), name='x') y = tf.placeholder(tf.int32, shape=(None, num_classes), name='y') is_training = tf.placeholder(dtype=tf.bool, shape=(), name='isTraining') model = ConvNet(is_training=is_training) _ = model.inference(x) #%% with tf.Session() as sess: # Initialise all variables tf.initialize_all_variables().run(session=sess) checkpoint_dirs = ['checkpoints_0reg_lr1e4_sqrtinit'] ckpt_file = 'epoch14000.ckpt' #subdir = './' subdir = 'checkpoints_new/' test_size = 1000 saver = tf.train.Saver() for ckpt_path in checkpoint_dirs:
def train(): """ Performs training and evaluation of ConvNet model. First define your graph using class ConvNet and its methods. Then define necessary operations such as trainer (train_step in this case), savers and summarizers. Finally, initialize your model within a tf.Session and do the training. --------------------------- How to evaluate your model: --------------------------- Evaluation on test set should be conducted over full batch, i.e. 10k images, while it is alright to do it over minibatch for train set. --------------------------------- How often to evaluate your model: --------------------------------- - on training set every print_freq iterations - on test set every eval_freq iterations ------------------------ Additional requirements: ------------------------ Also you are supposed to take snapshots of your model state (i.e. graph, weights and etc.) every checkpoint_freq iterations. For this, you should study TensorFlow's tf.train.Saver class. For more information, please checkout: [https://www.tensorflow.org/versions/r0.11/how_tos/variables/index.html] """ # Set the random seeds for reproducibility. DO NOT CHANGE. tf.set_random_seed(42) np.random.seed(42) ######################## # PUT YOUR CODE HERE # ######################## # Cifar10 stuff cifar10, image_shape, num_classes = standard_cifar10_get(FLAGS) # Placeholder variables x = tf.placeholder(tf.float32, shape=[None] + list(image_shape), name='x') y = tf.placeholder(tf.float32, shape=(None, num_classes), name='y') is_training = tf.placeholder(dtype=tf.bool, shape=(), name='isTraining') # CNN model model = ConvNet(is_training=is_training, dropout_rate=FLAGS.dropout_rate, save_stuff=FLAGS.save_stuff, fc_reg_str=FLAGS.fc_reg_str) # Get logits, loss, accuracy, train optimisation step logits = model.inference(x) accuracy = model.accuracy(logits, y) reg_loss = sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) loss = model.loss(logits, y) + reg_loss tf.scalar_summary('loss_incl_reg', loss) train_op = train_step(loss) # Function for getting feed dicts def get_feed(c, train=True): if train: xd, yd = c.train.next_batch(FLAGS.batch_size) return {x: xd, y: yd, is_training: True} else: xd, yd = c.test.images[:FLAGS.test_size], c.test.labels[:FLAGS. test_size] return {x: xd, y: yd, is_training: False} # For saving checkpoints saver = tf.train.Saver() with tf.Session() as sess: # Initialise all variables tf.initialize_all_variables().run(session=sess) # Merge all the summaries merged = tf.merge_all_summaries() if FLAGS.save_stuff: train_writer = tf.train.SummaryWriter(FLAGS.log_dir + '/train', sess.graph) test_writer = tf.train.SummaryWriter(FLAGS.log_dir + '/test') # Start training loops for epoch in range(0, FLAGS.max_steps): if epoch % 100 == 0: # Print accuracy and loss on test set summary, acc, loss_val = \ sess.run([merged, accuracy, loss], get_feed(cifar10, False)) if FLAGS.save_stuff: test_writer.add_summary(summary, epoch) print('\nEpoch', epoch, '\nTest accuracy:', acc, '\nTest loss :', loss_val) if epoch % FLAGS.checkpoint_freq == 0: # Save model checkpoint if epoch > 0: save_path = saver.save(sess, FLAGS.checkpoint_dir + \ '/epoch'+ str(epoch) + '.ckpt') print("Model saved in file: %s" % save_path) # Do training update if FLAGS.save_stuff: summary, _ = sess.run([merged, train_op], feed_dict=get_feed(cifar10, True)) train_writer.add_summary(summary, epoch) else: sess.run([train_op], feed_dict=get_feed(cifar10, True)) # Print the final accuracy summary, acc, loss_val = \ sess.run([merged, accuracy, loss], get_feed(cifar10, False)) if FLAGS.save_stuff: test_writer.add_summary(summary, epoch + 1) print('\nFinal test accuracy:', acc, '\nFinal test loss :', loss_val) save_path = saver.save(sess, FLAGS.checkpoint_dir + \ '/epoch'+ str(epoch + 1) + '.ckpt') print("Model saved in file: %s" % save_path)
def feature_extraction(): """ This method restores a TensorFlow checkpoint file (.ckpt) and rebuilds inference model with restored parameters. From then on you can basically use that model in any way you want, for instance, feature extraction, finetuning or as a submodule of a larger architecture. However, this method should extract features from a specified layer and store them in data files such as '.h5', '.npy'/'.npz' depending on your preference. You will use those files later in the assignment. Args: [optional] Returns: None """ ######################## # PUT YOUR CODE HERE # ######################## tf.reset_default_graph() classes = [ 'plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck' ] tf.set_random_seed(42) np.random.seed(42) cifar10 = cifar10_utils.get_cifar10(FLAGS.data_dir) x_test, y_test = cifar10.test.images, cifar10.test.labels y_test = np.argmax(y_test, axis=1) input_data_dim = cifar10.test.images.shape[1] n_classes = 10 cnn = ConvNet() cnn.dropout_rate = 1.0 x = tf.placeholder(tf.float32, shape=(None, input_data_dim, input_data_dim, 3), name="x") y = tf.placeholder(tf.float32, shape=(None, n_classes), name="y") cnn.is_training = tf.placeholder(tf.bool) with tf.name_scope('train_cnn'): infs = cnn.inference(x) flatten = cnn.flatten fc1 = cnn.fc1 fc2 = cnn.fc2 with tf.Session() as sess: saver = tf.train.Saver() saver.restore(sess, FLAGS.checkpoint_dir + '/cnn_model.ckpt') fc2_features = sess.run([fc2], feed_dict={ x: x_test, cnn.is_training: False })[0] # _plot_tsne("fc2.png", fc2_features, y_test) fc1_features = sess.run([fc1], feed_dict={ x: x_test, cnn.is_training: False })[0] # _plot_tsne("fc1.png", fc1_features, y_test) flatten_features = sess.run([flatten], feed_dict={ x: x_test, cnn.is_training: False })[0] # _plot_tsne("flatten.png", flatten_features, y_test) _train_one_vs_all(fc2_features, y_test, "FC2", classes) _train_one_vs_all(fc1_features, y_test, "FC1", classes) _train_one_vs_all(flatten_features, y_test, "Flatten", classes)
def train(): """ Performs training and evaluation of ConvNet model. First define your graph using class ConvNet and its methods. Then define necessary operations such as trainer (train_step in this case), savers and summarizers. Finally, initialize your model within a tf.Session and do the training. --------------------------- How to evaluate your model: --------------------------- Evaluation on test set should be conducted over full batch, i.e. 10k images, while it is alright to do it over minibatch for train set. --------------------------------- How often to evaluate your model: --------------------------------- - on training set every print_freq iterations - on test set every eval_freq iterations ------------------------ Additional requirements: ------------------------ Also you are supposed to take snapshots of your model state (i.e. graph, weights and etc.) every checkpoint_freq iterations. For this, you should study TensorFlow's tf.train.Saver class. For more information, please checkout: [https://www.tensorflow.org/versions/r0.11/how_tos/variables/index.html] """ # Set the random seeds for reproducibility. DO NOT CHANGE. tf.set_random_seed(42) np.random.seed(42) ######################## # PUT YOUR CODE HERE # ######################## cifar10 = cifar10_utils.get_cifar10(FLAGS.data_dir) x_test, y_test = cifar10.test.images[0:1000], cifar10.test.labels[0:1000] #### PARAMETERS classes = [ 'plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck' ] n_classes = len(classes) input_data_dim = cifar10.test.images.shape[1] ##### cnn = ConvNet() cnn.is_training = tf.placeholder(tf.bool) cnn.dropout_rate = 0.5 x = tf.placeholder(tf.float32, shape=(None, input_data_dim, input_data_dim, 3), name="x") y = tf.placeholder(tf.float32, shape=(None, n_classes), name="y") with tf.name_scope('train_cnn'): infs = cnn.inference(x) with tf.name_scope('cross-entropy-loss'): loss = cnn.loss(infs, y) with tf.name_scope('accuracy'): accuracy = cnn.accuracy(infs, y) fc2 = cnn.fc2 merged = tf.merge_all_summaries() opt_operation = train_step(loss) with tf.Session() as sess: saver = tf.train.Saver() sess.run(tf.initialize_all_variables()) test_acc = sess.run(accuracy, feed_dict={ x: x_test, y: y_test, cnn.is_training: False }) print("Initial Test Accuracy = {0:.3f}".format(test_acc)) train_writer = tf.train.SummaryWriter(FLAGS.log_dir + "/train/", sess.graph) test_writer = tf.train.SummaryWriter(FLAGS.log_dir + "/test/", sess.graph) for iteration in range(FLAGS.max_steps + 1): x_batch, y_batch = cifar10.train.next_batch(FLAGS.batch_size) _ = sess.run([opt_operation], feed_dict={ x: x_batch, y: y_batch, cnn.is_training: False }) if iteration % FLAGS.print_freq == 0: [train_acc, train_loss, summary_train] = sess.run([accuracy, loss, merged], feed_dict={ x: x_batch, y: y_batch, cnn.is_training: False }) train_writer.add_summary(summary_train, iteration) print( "Iteration {0:d}/{1:d}. Train Loss = {2:.3f}, Train Accuracy = {3:.3f}" .format(iteration, FLAGS.max_steps, train_loss, train_acc)) if iteration % FLAGS.eval_freq == 0: [test_acc, test_loss, summary_test] = sess.run([accuracy, loss, merged], feed_dict={ x: x_test, y: y_test, cnn.is_training: False }) test_writer.add_summary(summary_test, iteration) print( "Iteration {0:d}/{1:d}. Test Loss = {2:.3f}, Test Accuracy = {3:.3f}" .format(iteration, FLAGS.max_steps, test_loss, test_acc)) if iteration > 0 and iteration % FLAGS.checkpoint_freq == 0: saver.save(sess, FLAGS.checkpoint_dir + '/cnn_model.ckpt') train_writer.flush() test_writer.flush() train_writer.close() test_writer.close() test_acc = sess.run(accuracy, feed_dict={ x: x_test, y: y_test, cnn.is_training: False }) print("Final Test Accuracy = {0:.3f}".format(test_acc)) sess.close()
def train(): """ Performs training and evaluation of ConvNet model. First define your graph using class ConvNet and its methods. Then define necessary operations such as trainer (train_step in this case), savers and summarizers. Finally, initialize your model within a tf.Session and do the training. --------------------------- How to evaluate your model: --------------------------- Evaluation on test set should be conducted over full batch, i.e. 10k images, while it is alright to do it over minibatch for train set. --------------------------------- How often to evaluate your model: --------------------------------- - on training set every print_freq iterations - on test set every eval_freq iterations ------------------------ Additional requirements: ------------------------ Also you are supposed to take snapshots of your model state (i.e. graph, weights and etc.) every checkpoint_freq iterations. For this, you should study TensorFlow's tf.train.Saver class. For more information, please checkout: [https://www.tensorflow.org/versions/r0.11/how_tos/variables/index.html] """ # Set the random seeds for reproducibility. DO NOT CHANGE. tf.set_random_seed(42) np.random.seed(42) ######################## # PUT YOUR CODE HERE # ######################## #first lets test that out model works: #initialize: weight_init_scale = 0.001 cifar10 = cifar10_utils.get_cifar10(validation_size=100) cnet = ConvNet(10) x_in = tf.placeholder(tf.float32, [None, 32, 32, 3]) y_true = tf.placeholder(tf.float32, [None, 10]) with tf.variable_scope("ConvNet", reuse=None): filter1 = tf.get_variable("filter1", initializer=tf.random_normal( [5, 5, 3, 64], stddev=weight_init_scale, dtype=tf.float32)) filter2 = tf.get_variable("filter2", initializer=tf.random_normal( [5, 5, 64, 64], stddev=weight_init_scale, dtype=tf.float32)) W1 = tf.get_variable("W1", initializer=tf.random_normal( [4096, 384], stddev=weight_init_scale, dtype=tf.float32)) W2 = tf.get_variable("W2", initializer=tf.random_normal( [384, 192], stddev=weight_init_scale, dtype=tf.float32)) W3 = tf.get_variable("W3", initializer=tf.random_normal( [192, 10], stddev=weight_init_scale, dtype=tf.float32)) sess = tf.Session() saver = tf.train.Saver() #define things logits, flatten, fc1, fc2 = cnet.inference(x_in) loss = cnet.loss(logits, y_true) acc = cnet.accuracy(logits, y_true) opt_iter = train_step(loss) sess.run(tf.initialize_all_variables()) swriter = tf.train.SummaryWriter(FLAGS.log_dir + '/ConvNet', sess.graph) #xbat, ybat = cifar10.train.next_batch(100) #begin the training with sess: # loop for i in range(FLAGS.max_steps + 1): xbat, ybat = cifar10.train.next_batch(FLAGS.batch_size) sess.run(opt_iter, feed_dict={x_in: xbat, y_true: ybat}) if i % FLAGS.print_freq == 0: xbat, ybat = cifar10.validation.next_batch(100) val_acc, val_loss = sess.run([acc, loss], feed_dict={ x_in: xbat, y_true: ybat }) sys.stderr.write("iteration : " + str(i) + ", validation loss : " + str(val_loss) + ", validation_accuracy" + str(val_acc) + "\n") swriter.add_summary( sess.run(tf.scalar_summary("accuracy", val_acc), feed_dict={ x_in: xbat, y_true: ybat }), i) if i % FLAGS.checkpoint_freq == 0: lo, flatsave, fc1save, fc2save = sess.run(cnet.inference(x_in), feed_dict={ x_in: xbat, y_true: ybat }) np.save(FLAGS.checkpoint_dir + "/ConvNet/flatten", flatsave) np.save(FLAGS.checkpoint_dir + "/ConvNet/fc1", fc1save) np.save(FLAGS.checkpoint_dir + "/ConvNet/fc2", fc2save) np.save(FLAGS.checkpoint_dir + "/ConvNet/labels", ybat) saver.save( sess, FLAGS.checkpoint_dir + "/ConvNet/" + "checkpoint.ckpt") if i % FLAGS.eval_freq == 0: xbat, ybat = cifar10.test.next_batch(100) sys.stderr.write( "test accuracy:" + str(sess.run(acc, feed_dict={ x_in: xbat, y_true: ybat })) + "\n")