def four_class(iter_idx): neural_net = ConvNet([ConvLayer(32, (128, 4), weight_scale=0.044, padding_mode=False), ActivationLayer('leakyReLU'), MaxPoolingLayerCUDA((1, 4)), ConvLayer(32, (32, 4), weight_scale=0.088, padding_mode=False), ActivationLayer('leakyReLU'), MaxPoolingLayerCUDA((1, 2)), ConvLayer(32, (32, 4), weight_scale=0.088, padding_mode=False), ActivationLayer('leakyReLU'), GlobalPoolingLayer(), FullyConnectedLayer(32, weight_scale=0.125), ActivationLayer('leakyReLU'), FullyConnectedLayer(32, weight_scale=0.125), ActivationLayer('leakyReLU'), FullyConnectedLayer(4, weight_scale=0.17), SoftmaxLayer()], DataProvider(num_genres=4)) neural_net.setup_layers((128, 599), (4, )) time1 = time.time() neural_net.train(learning_rate=0.005, num_iters=120, lrate_schedule=True) time2 = time.time() print('Time taken: %.1fs' % (time2 - time1)) f = open('four_class_run' + str(iter_idx) + '.txt', 'w') f.write(str(neural_net.results)) f.close() print 'Iteration ' + str(iter_idx) print neural_net.results
ActivationLayer('leakyReLU'), MaxPoolingLayerCUDA((1, 2)), ConvLayer(32, (32, 4), weight_scale=0.088, padding_mode=False), ActivationLayer('leakyReLU'), GlobalPoolingLayer(), FullyConnectedLayer(32, weight_scale=0.125), ActivationLayer('leakyReLU'), FullyConnectedLayer(32, weight_scale=0.125), ActivationLayer('leakyReLU'), FullyConnectedLayer(6, weight_scale=0.17), SoftmaxLayer()], DataProvider(num_genres=6)) neural_net.setup_layers((128, 599), (6, )) neural_net.init_params_from_file() genres = ['classical', 'metal', 'blues', 'disco', 'hiphop', 'reggae'] for genre in genres: for layer_id in range(3): activations_for_test_data = neural_net.test_data_activations_for_conv_layer( layer_id + 1, genre) for result in activations_for_test_data: for filter_idx in range(result['filter_activations'].shape[0]): x = np.arange(0, result['filter_activations'].shape[1], 1) y = result['filter_activations'][filter_idx] dir_path = './activations/6genres/conv_layer' + str(layer_id + 1) + '/filter' +\