Exemple #1
0
 def __init__(self, name, D = 2, kernel = "linear", alpha = 1.0, invert = False, kernel_params = {}, client = None):
     params = {"D": D,
               "kernel": kernel,
               "alpha": alpha,
               "invert": invert,
               "kernel_params": kernel_params}
     BasePipeline.__init__(self, name, "raw_kpca", client, params)
 def run(self, model, matrix=None, matrix_name=None, matrix_type=None):
     if matrix is not None:
         return BasePipeline.run(self,
                                 matrix_name=matrix.name,
                                 matrix_type=matrix.type,
                                 model=model)
     else:
         return BasePipeline.run(self,
                                 matrix_name=matrix_name,
                                 matrix_type=matrix_type,
                                 model=model)
 def __init__(self,
              name,
              kernel="linear",
              alpha=1.0,
              kernel_params={},
              client=None):
     params = {
         "kernel": kernel,
         "alpha": alpha,
         "kernel_params": kernel_params
     }
     BasePipeline.__init__(self, name, "raw_krr", client, params)
 def __init__(self,
              name,
              K=5,
              kernel="euclidean",
              algo="auto",
              weights="uniform",
              kernel_params={},
              client=None):
     params = {
         "k": K,
         "kernel": kernel,
         "algo": algo,
         "weights": weights,
         "kernel_params": kernel_params
     }
     BasePipeline.__init__(self, name, "raw_knn_regressor", client, params)
Exemple #5
0
 def __init__(self,
              name,
              init_alpha=None,
              init_beta=None,
              trans_cov=None,
              obs_cov=None,
              init_cov=None,
              optimizations=[],
              client=None):
     params = {
         "init_alpha": init_alpha,
         "init_beta": init_beta,
         "trans_cov": trans_cov,
         "obs_cov": obs_cov,
         "init_cov": init_cov,
         "optimizations": optimizations
     }
     BasePipeline.__init__(self, name, "kalman_ols", client, params)
 def run(self, X, Y, model):
     return BasePipeline.run(self, X=X, Y=Y, model=model)
Exemple #7
0
 def run(self, dataset, model):
     return BasePipeline.run(self, dataset=dataset, model=model)
Exemple #8
0
 def __init__(self, name, corr_method="pearson", client=None):
     params = {"corr_method": corr_method}
     BasePipeline.__init__(self, name, "raw_mst", client, params)
 def run(self, dataset, model, class_column):
     return BasePipeline.run(self,
                             dataset=dataset,
                             model=model,
                             extra_params={"class_column": class_column})
 def __init__(self, name, rate = 0.1, n_trees = 100, client = None):
     params = {"rate" : min(0.5, rate), 
               "n_trees": n_trees}
     BasePipeline.__init__(self, name, "isolation_forest", client, params)
 def __init__(self, name, D=2, client=None):
     params = {"D": D}
     BasePipeline.__init__(self, name, "matrix_kpca", client, params)
Exemple #12
0
 def __init__(self, name, D = 2, K = 3, client = None):
     params = {"D": D,
               "K": K}
     BasePipeline.__init__(self, name, "raw_isomap", client, params)
Exemple #13
0
 def __init__(self, name, D = 2, affinity = "knn", K = 5, gamma = 1.0, client = None):
     params = {"D": D,
               "K": K,
               "affinity": affinity,
               "gamma": gamma}
     BasePipeline.__init__(self, name, "raw_laplacian_eigenmap", client, params)
Exemple #14
0
 def __init__(self, name, D = 2, K = 3, method = "standard", client = None):
     params = {"D": D,
               "k": K,
               "method": method}
     BasePipeline.__init__(self, name, "raw_lle", client, params)
 def __init__(self, name, retrain = True, client = None):
     params = {"retrain": retrain}
     BasePipeline.__init__(self, name, "basic_a2d", client, params)
 def __init__(self, name, bandwidth = "scott", client = None):
     params = {"bandwidth": bandwidth}
     BasePipeline.__init__(self, name, "raw_kde", client, params)
 def __init__(self, name, alpha=0.1, client=None):
     params = {"alpha": alpha}
     BasePipeline.__init__(self, name, "matrix_agglomeration", client,
                           params)
 def __init__(self, name, n_trees=8, client=None):
     params = {
         "n_trees": n_trees,
     }
     BasePipeline.__init__(self, name, "raw_rfr", client, params)
 def __init__(self, name, kernel = "euclidean", geodesic = False, K = 5, kernel_params = {}, client = None):
     params = {"k": K,
               "kernel": kernel,
               "kernel_params": kernel_params,
               "geodesic": geodesic}
     BasePipeline.__init__(self, name, "dist_matrix", client, params)
Exemple #20
0
 def __init__(self, name, K=3, client=None):
     params = {"K": K}
     BasePipeline.__init__(self, name, "raw_cfg", client, params)
Exemple #21
0
 def __init__(self, name, K=3, kernel="euclidean", client=None):
     params = {"K": K, "kernel": kernel}
     BasePipeline.__init__(self, name, "raw_knn_net", client, params)
 def __init__(self, name, client=None):
     params = {}
     BasePipeline.__init__(self, name, "matrix_mst", client, params)
 def __init__(self, name, sigma=0.1, client=None):
     params = {"sigma": sigma}
     BasePipeline.__init__(self, name, "raw_pnn", client, params)