def __init__(self, name, D = 2, kernel = "linear", alpha = 1.0, invert = False, kernel_params = {}, client = None): params = {"D": D, "kernel": kernel, "alpha": alpha, "invert": invert, "kernel_params": kernel_params} BasePipeline.__init__(self, name, "raw_kpca", client, params)
def run(self, model, matrix=None, matrix_name=None, matrix_type=None): if matrix is not None: return BasePipeline.run(self, matrix_name=matrix.name, matrix_type=matrix.type, model=model) else: return BasePipeline.run(self, matrix_name=matrix_name, matrix_type=matrix_type, model=model)
def __init__(self, name, kernel="linear", alpha=1.0, kernel_params={}, client=None): params = { "kernel": kernel, "alpha": alpha, "kernel_params": kernel_params } BasePipeline.__init__(self, name, "raw_krr", client, params)
def __init__(self, name, K=5, kernel="euclidean", algo="auto", weights="uniform", kernel_params={}, client=None): params = { "k": K, "kernel": kernel, "algo": algo, "weights": weights, "kernel_params": kernel_params } BasePipeline.__init__(self, name, "raw_knn_regressor", client, params)
def __init__(self, name, init_alpha=None, init_beta=None, trans_cov=None, obs_cov=None, init_cov=None, optimizations=[], client=None): params = { "init_alpha": init_alpha, "init_beta": init_beta, "trans_cov": trans_cov, "obs_cov": obs_cov, "init_cov": init_cov, "optimizations": optimizations } BasePipeline.__init__(self, name, "kalman_ols", client, params)
def run(self, X, Y, model): return BasePipeline.run(self, X=X, Y=Y, model=model)
def run(self, dataset, model): return BasePipeline.run(self, dataset=dataset, model=model)
def __init__(self, name, corr_method="pearson", client=None): params = {"corr_method": corr_method} BasePipeline.__init__(self, name, "raw_mst", client, params)
def run(self, dataset, model, class_column): return BasePipeline.run(self, dataset=dataset, model=model, extra_params={"class_column": class_column})
def __init__(self, name, rate = 0.1, n_trees = 100, client = None): params = {"rate" : min(0.5, rate), "n_trees": n_trees} BasePipeline.__init__(self, name, "isolation_forest", client, params)
def __init__(self, name, D=2, client=None): params = {"D": D} BasePipeline.__init__(self, name, "matrix_kpca", client, params)
def __init__(self, name, D = 2, K = 3, client = None): params = {"D": D, "K": K} BasePipeline.__init__(self, name, "raw_isomap", client, params)
def __init__(self, name, D = 2, affinity = "knn", K = 5, gamma = 1.0, client = None): params = {"D": D, "K": K, "affinity": affinity, "gamma": gamma} BasePipeline.__init__(self, name, "raw_laplacian_eigenmap", client, params)
def __init__(self, name, D = 2, K = 3, method = "standard", client = None): params = {"D": D, "k": K, "method": method} BasePipeline.__init__(self, name, "raw_lle", client, params)
def __init__(self, name, retrain = True, client = None): params = {"retrain": retrain} BasePipeline.__init__(self, name, "basic_a2d", client, params)
def __init__(self, name, bandwidth = "scott", client = None): params = {"bandwidth": bandwidth} BasePipeline.__init__(self, name, "raw_kde", client, params)
def __init__(self, name, alpha=0.1, client=None): params = {"alpha": alpha} BasePipeline.__init__(self, name, "matrix_agglomeration", client, params)
def __init__(self, name, n_trees=8, client=None): params = { "n_trees": n_trees, } BasePipeline.__init__(self, name, "raw_rfr", client, params)
def __init__(self, name, kernel = "euclidean", geodesic = False, K = 5, kernel_params = {}, client = None): params = {"k": K, "kernel": kernel, "kernel_params": kernel_params, "geodesic": geodesic} BasePipeline.__init__(self, name, "dist_matrix", client, params)
def __init__(self, name, K=3, client=None): params = {"K": K} BasePipeline.__init__(self, name, "raw_cfg", client, params)
def __init__(self, name, K=3, kernel="euclidean", client=None): params = {"K": K, "kernel": kernel} BasePipeline.__init__(self, name, "raw_knn_net", client, params)
def __init__(self, name, client=None): params = {} BasePipeline.__init__(self, name, "matrix_mst", client, params)
def __init__(self, name, sigma=0.1, client=None): params = {"sigma": sigma} BasePipeline.__init__(self, name, "raw_pnn", client, params)