Exemple #1
0
def load_model():
    # Root directory of the project
    ROOT_DIR = os.path.abspath("")

    # Import Mask RCNN
    sys.path.append(ROOT_DIR)  # To find local version of the library
    # Directory to save logs and trained model
    MODEL_DIR = os.path.join(ROOT_DIR, "logs")

    # You can download this file from the Releases page
    # https://github.com/matterport/Mask_RCNN/releases
    BALLON_WEIGHTS_PATH = "mrcnn/mask_rcnn_object_0010.h5"  # TODO: update this path

    config = custom.CustomConfig()
    CUSTOM_DIR = os.path.join(ROOT_DIR, "dataset")

    # changes for inferencing.
    class InferenceConfig(config.__class__):
        # Run detection on one image at a time
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1

    config = InferenceConfig()
    config.display()

    # Device to load the neural network on.
    # Useful if you're training a model on the same
    # machine, in which case use CPU and leave the
    # GPU for training.
    DEVICE = "/gpu:0"  # /cpu:0 or /gpu:0

    # Inspect the model in training or inference modes
    # values: 'inference' or 'training'
    # TODO: code for 'training' test mode not ready yet
    TEST_MODE = "inference"

    # Load validation dataset
    dataset = custom.CustomDataset()
    dataset.load_custom(CUSTOM_DIR, "val")

    # Must call before using the dataset
    dataset.prepare()

    print("Images: {}\nClasses: {}".format(len(dataset.image_ids),
                                           dataset.class_names))

    with tf.device(DEVICE):
        model = modellib.MaskRCNN(mode="inference",
                                  model_dir=MODEL_DIR,
                                  config=config)

    weights_path = "mrcnn/mask_rcnn_object_0010.h5"
    # Load weights
    print("Loading weights ", weights_path)
    model.load_weights(weights_path, by_name=True)
    return model, dataset, config
config.display()

#Qual dispositivo deve ser usado na predição

DEVICE = "/cpu:0"  #"/gpu:0"  # /cpu:0 or /gpu:0
TEST_MODE = "inference"


def get_ax(rows=1, cols=1, size=16):
    _, ax = plt.subplots(rows, cols, figsize=(size * cols, size * rows))
    return ax


# Carregando informações do dataset

dataset = custom.CustomDataset()
dataset.load_custom(CUSTOM_DIR, "val")
dataset.prepare()
print("Images: {}\nClasses: {}".format(len(dataset.image_ids),
                                       dataset.class_names))

with tf.device(DEVICE):
    model = modellib.MaskRCNN(mode="inference",
                              model_dir=MODEL_DIR,
                              config=config)

weights_path = os.path.join(ROOT_DIR, "WEIGHT\CORROSION.h5")

# Carregando o peso previamente treinado com as imagens de corrosão
print("Carregando modelo treinado: ", weights_path)
model.load_weights(weights_path, by_name=True)
Exemple #3
0
    def detect_image(self, image,k):
        start = timer()

        if self.model_image_size != (None, None):
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        print(image_data.shape)
        image_data /= 255.
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                    size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 300

        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)

            top, left, bottom, right = box
            top = max(0, np.floor(top + 0.5))
            left = max(0, np.floor(left + 0.5))
            bottom = min(image.size[1], np.floor(bottom + 0.5))
            right = min(image.size[0], np.floor(right + 0.5))
            print(label, (left, top), (right, bottom))

            #a=[1,2,3,4,5,6,7,8,9,10]

            dict1={"class":label, i:[left, top, right, bottom]}
            #print(dict1)
            dict2.update(dict1)
            # print(dict2)
            dict1 = {}




            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):
                draw.rectangle(
                    [left + i, top + i, right - i, bottom - i],
                    outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin), tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw

            conn = sqlite3.connect('toll_data.db')
            c = conn.cursor()

            print("classssssssssss",out_classes)
            ##################################################### MASK RCNN#########################################################
            for i in out_classes:
                if(i==7):
                    # Directory to save logs and trained model
                    MODEL_DIR = os.path.join(ROOT_DIR, "logs")

                    custom_WEIGHTS_PATH = "mask_rcnn_wheel_0100.h5"  # TODO: update this path

                    config = custom.CustomConfig()
                    custom_DIR = os.path.join(ROOT_DIR, "customImages")

                    # ---------------------------------------------------------------------------

                    # Override the training configurations with a few
                    # changes for inferencing.
                    class InferenceConfig(config.__class__):
                        # Run detection on one image at a time
                        GPU_COUNT = 1
                        IMAGES_PER_GPU = 1

                    config = InferenceConfig()
                    config.display()

                    # Device to load the neural network on.
                    # Useful if you're training a model on the same
                    # machine, in which case use CPU and leave the
                    # GPU for training.
                    DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0

                    # Inspect the model in training or inference modes
                    # values: 'inference' or 'training'
                    # TODO: code for 'training' te

                    def get_ax(rows=1, cols=1, size=16):
                        """Return a Matplotlib Axes array to be used in
                        all visualizations in the notebook. Provide a
                        central point to control graph sizes.

                        Adjust the size attribute to control how big to render images
                        """
                        _, ax = plt.subplots(rows, cols, figsize=(size * cols, size * rows))
                        return ax

                    # Load validation dataset
                    dataset = custom.CustomDataset()
                    dataset.load_custom(custom_DIR, "val")

                    # Must call before using the dataset
                    dataset.prepare()

                    print("Images: {}\nClasses: {}".format(len(dataset.image_ids), dataset.class_names))

                    # Create model in inference mode
                    with tf.device(DEVICE):
                        model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR,
                                                  config=config)

                    # load the last model you trained
                    # weights_path = model.find_last()[1]

                    # Load weights
                    print("Loading weights ", custom_WEIGHTS_PATH)
                    model.load_weights(custom_WEIGHTS_PATH, by_name=True)

                    # Display results
                    import skimage
                    # i=read()
                    imag =skimage.io.imread(k)
                    results = model.detect([imag], verbose=1)
                    ax = get_ax(1)
                    r = results[0]
                    visualize.display_instances(imag, r['rois'], r['masks'], r['class_ids'],
                                                dataset.class_names, r['scores'], ax=ax,
                                                title="Predictions")
                    visualize.display_images(imag)
                    print(r['scores'])
                    axle = (len(r['scores']))
                    print(len(r['scores']))
                    if axle >= 8:
                        c = conn.cursor()
                        #seven_count = seven_count + 1
                        global eight_count
                        eight_count = eight_count + 1
                        print(eight_count)
                        print("8 Axle or 8 Axle Above Truck... Pay 12 Riyal")
                        now = datetime.datetime.now()
                        print(now)
                        global eight_sum
                        eight_sum = eight_sum + 12
                        print("eight_sum", eight_sum)
                        ctime = now.strftime("%I:%M:%S %p")
                        today = now.strftime("%Y-%m-%d")
                        car = '--'
                        bus = '--'
                        truck = '8 axle or above'
                        amount = 20

                        c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                                  (today, ctime, car, bus, truck, amount))

                        conn.commit()
                    elif axle == 7:
                        c = conn.cursor()
                        #seven_count = seven_count + 1
                        global seven_count
                        seven_count = seven_count + 1
                        print(seven_count)
                        print("7 Axle Truck... Pay 10 Riyal")
                        now = datetime.datetime.now()
                        print(now)
                        global seven_sum
                        seven_sum = seven_sum + 10
                        print("seven_sum", seven_sum)
                        ctime = now.strftime("%I:%M:%S %p")
                        today = now.strftime("%Y-%m-%d")
                        car = '--'
                        bus = '--'
                        truck = '7 axle'
                        amount = 20

                        c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                                  (today, ctime, car, bus, truck, amount))

                        conn.commit()

                    elif axle == 6:
                        c = conn.cursor()
                        global  six_count
                        six_count = six_count + 1
                        print(six_count)
                        print("6 Axle Truck... Pay 8 Riyal")
                        now = datetime.datetime.now()
                        print(now)
                        global six_sum
                        six_sum = six_sum + 8
                        print("six_sum", six_sum)
                        ctime = now.strftime("%I:%M:%S %p")
                        today = now.strftime("%Y-%m-%d")
                        car = '--'
                        bus = '--'
                        truck = '6 axle'
                        amount = 20

                        c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                                  (today, ctime, car, bus, truck, amount))

                        conn.commit()
                    elif axle == 5:
                        c = conn.cursor()
                        global five_count
                        five_count = five_count + 1
                        print(five_count)
                        print("5 Axle Truck... Pay 6 Riyal")
                        now = datetime.datetime.now()
                        print(now)
                        global five_sum
                        five_sum = five_sum + 6
                        print("five_sum", five_sum)
                        ctime = now.strftime("%I:%M:%S %p")
                        today = now.strftime("%Y-%m-%d")
                        car = '--'
                        bus = '--'
                        truck = '5 axle'
                        amount = 20

                        c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                                  (today, ctime, car, bus, truck, amount))

                        conn.commit()
                    elif axle == 4:
                        c = conn.cursor()
                        global four_count
                        four_count = four_count + 1
                        print(four_count)
                        print("4 Axle Truck... Pay 4 Riyal")
                        now = datetime.datetime.now()
                        print(now)
                        global four_sum
                        four_sum = four_sum + 4
                        print("four_sum", four_sum)
                        ctime = now.strftime("%I:%M:%S %p")
                        today = now.strftime("%Y-%m-%d")
                        car = '--'
                        bus = '--'
                        truck = '4 axle'
                        amount = 20

                        c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                                  (today, ctime, car, bus, truck, amount))

                        conn.commit()
                    elif axle == 3:
                        c = conn.cursor()

                        #global three_count
                        #three_count = three_count + 1
                        #print(three_count)

                        now = datetime.datetime.now()
                        #print(now)
                        #global three_sum
                        #three_sum = three_sum + 2
                        #print("three_sum", three_sum)
                        ctime = now.strftime("%I:%M:%S %p")
                        today = now.strftime("%Y-%m-%d")

                        car = '--'
                        bus = '--'
                        truck = '3 axle'
                        amount = 15


                        c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                                  (today, ctime, car, bus, truck, amount))
                        conn.commit()


                    else:
                        c = conn.cursor()

                        now = datetime.datetime.now()
                        #global two_sum
                        #two_sum = two_sum + 1

                        #print("two_sum", two_sum)
                        ctime = now.strftime("%I:%M:%S %p")
                        today = now.strftime("%Y-%m-%d")

                        car = '--'
                        bus = '--'
                        truck = '2 axle'
                        amount = 10

                        c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                                  (today, ctime, car, bus, truck, amount))

                        conn.commit()


                elif i == 5:
                    c = conn.cursor()
                    global flag
                    flag = 1
                    now = datetime.datetime.now()

                    #global bus_sum
                    #bus_sum = bus_sum + 3
                    #print(bus_sum)
                    ctime= now.strftime("%I:%M:%S %p")
                    today = now.strftime("%Y-%m-%d")
                    car = '--'
                    bus = 'bus'
                    truck = '--'
                    amount = 20

                    c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                              (today, ctime, car, bus, truck, amount))

                    conn.commit()
                elif i == 2:
                    c = conn.cursor()
                    global flag
                    flag = 2
                    now = datetime.datetime.now()

                    #global car_sum
                    #car_sum = car_sum + 2
                    #print(car_sum)
                    ctime = now.strftime("%I:%M:%S %p")
                    today = now.strftime("%Y-%m-%d")

                    car = 'car'
                    bus = '--'
                    truck = '--'
                    amount = 10

                    c.execute("INSERT INTO toll(datestamp, time, car,bus,truck,amount) VALUES (?,?, ?, ?, ?,?)",
                              (today, ctime, car, bus, truck, amount))

                    conn.commit()
                else : continue
                ########################### CAR COUNT #####################################

                v = """SELECT count(car) FROM toll GROUP BY car"""
                c.execute(v)
                record = c.fetchall()
                car_count_list = []
                for row in record:
                    car_count_list = row[0]
                print("Printing Car  Count", car_count_list)

                ############################# BUS COUNT ##################################

                sel = """SELECT count(bus) FROM toll GROUP BY bus"""
                c.execute(sel)
                record = c.fetchall()
                count_list = []
                for row in record:
                    count_list = row[0]
                print("Printing Bus Count", count_list)
                ############################## TRUCK COUNT ###############################

                sel = """SELECT count(truck) FROM toll GROUP BY truck"""
                c.execute(sel)
                record = c.fetchall()
                print("size", record)
                global truck_count
                sel_truck = """SELECT truck FROM toll  """
                c.execute(sel_truck)
                rec = c.fetchall()
                for r in rec :
                    print(r[0])
                conn.commit()
                ############################## TWO COUNT ###############################
                sel_two = """SELECT count(truck) FROM toll WHERE truck = '2 axle' """
                c.execute(sel_two)
                rec_two = c.fetchall()
                for row in rec_two:
                    print(row)
                flag = 3
                conn.commit()
                ############################## THREE COUNT ###############################
                sel_three = """SELECT truck FROM toll WHERE truck = '3 axle' """
                c.execute(sel_three)
                rec_three = c.fetchall()
                for row1 in rec_three:
                    print(row1)
                flag = 4
                conn.commit()
                ############################## FOUR COUNT ###############################


                if flag == 2:
                    c = conn.cursor()
                    now = datetime.datetime.now()
                    today = now.strftime("%Y-%m-%d")

                    car = car_count_list

                    # c.execute("INSERT INTO count(eight_above,seven,six,five,four,three,two,car,bus) VALUES "
                    # "(?, ?, ?, ?,?,?,?,?,?)", (eight_or_more, seven, six, five, four, three, two, car, bus))



                    up = """UPDATE count SET date =? ,car=? WHERE count_id =1"""

                    val = (today, car)
                    c.execute(up, val)

                    global car_sum
                    car_sum = car * 10
                    up = """UPDATE amount SET date =?, car_sum=? WHERE amt_id =1"""
                    val = (today, car_sum)
                    c.execute(up, val)

                    conn.commit()
                elif flag == 1:

                    c = conn.cursor()

                    now = datetime.datetime.now()
                    today = now.strftime("%Y-%m-%d")

                    bus = count_list

                    #c.execute("INSERT INTO count (date,bus) VALUES  (?, ?)", (today,bus))

                    up = """UPDATE count SET date =?, bus=? WHERE count_id =1"""

                    val = (today, bus)
                    c.execute(up, val)
                    global bus_sum
                    bus_sum = bus * 20
                    up1 = """UPDATE amount SET date =?, bus_sum=? WHERE amt_id =1"""
                    val1 = (today, bus_sum)
                    c.execute(up1,val1)

                    conn.commit()
                elif flag == 3:

                    c = conn.cursor()

                    now = datetime.datetime.now()
                    today = now.strftime("%Y-%m-%d")
                    tr_2count = row
                    up1 = """UPDATE count SET date =?, 2axle=? WHERE count_id =1"""

                    val1 = (today, tr_2count)
                    c.execute(up1, val1)

                    global truck_sum
                    truck_sum = tr_2count * 50
                    up2 = """UPDATE amount SET date =?, truck_sum=? WHERE amt_id =1"""
                    val2 = (today, truck_sum)
                    c.execute(up2, val2)

                elif flag == 4:

                    c = conn.cursor()

                    now = datetime.datetime.now()
                    today = now.strftime("%Y-%m-%d")
                    tr_3count = row
                    up1 = """UPDATE count SET date =?, 3axle=? WHERE count_id =1"""

                    val1 = (today, tr_3count)
                    c.execute(up1, val1)

                    global truck_sum
                    truck_sum = tr_3count * 50
                    up2 = """UPDATE amount SET date =?, truck_sum=? WHERE amt_id =1"""
                    val2 = (today, truck_sum)
                    c.execute(up2, val2)

                    conn.commit()


            ####################################################MRCNN END##################################################

        end = timer()

        with open('data.json', 'w') as outfile:
            json.dump(dict2, outfile)

        print(end - start)
        return image,out_classes