def drawing(frame_queue, detections_queue, fps_queue):
    random.seed(3)  # deterministic bbox colors
    video = set_saved_video(cap, args.out_filename, (width, height))
    while cap.isOpened():
        frame_resized = frame_queue.get()
        detections = detections_queue.get()
        fps = fps_queue.get()
        if frame_resized is not None:
            image = darknet.draw_boxes(detections, frame_resized, class_colors)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            #預設剪中間背景當人臉
            face = image[160:390, 200:430]
            #如果有人臉座標就取代預設背景
            if detections:
                for label, confidence, bbox in detections:

                    left, top, right, bottom = darknet.bbox2points(bbox)

                    face = image[top:bottom, left:right]

            #if args.out_filename is not None:
            #video.write(image)
            if not args.dont_show:
                cv2.imshow('Inference', image)
                cv2.imshow('face', face)
            if cv2.waitKey(fps) == 27:
                break
    cap.release()
    video.release()
    cv2.destroyAllWindows()
Exemple #2
0
    def detect(self, frame):
        darknet_image = dn.make_image(self.width, self.height, 3)
        img_resized = cv2.resize(frame, (self.width, self.height),
                                 interpolation=cv2.INTER_LINEAR)

        # get image ratios to convert bounding boxes to proper size
        img_height, img_width, _ = frame.shape
        width_ratio = img_width / self.width
        height_ratio = img_height / self.height

        # run model on darknet style image to get detections
        dn.copy_image_from_bytes(darknet_image, img_resized.tobytes())
        detections = dn.detect_image(self.network, self.class_names,
                                     darknet_image)
        dn.free_image(darknet_image)

        results = []
        for label, confidence, bbox in detections:
            if float(confidence) <= 98.0:
                continue

            left, top, right, bottom = dn.bbox2points(bbox)
            left, top, right, bottom = int(left * width_ratio), int(top * height_ratio), \
                                       int(right * width_ratio), int(bottom * height_ratio)

            results.append((confidence, (left, top, right, bottom)))

        if len(results) > 0:
            return max(results)[1]
        else:
            return None
Exemple #3
0
def detect_variables(cfg_file='cfg/var_det.cfg',
                     data='data/var_det.data',
                     weights='backup/variable_detection.weights',
                     path_to_imgs='./cropped_imgs',
                     dest_path='./final_imgs'):
    """
    input: path to cfg-file, path to data-file, path to weights, path to image folder
    applies yolov4 model to each image to detect variables and path coefficients
    in a (cropped) SEM figure
    """
    os.system(f'mkdir {dest_path}')

    colors = {'c': (249, 69, 252), 'i': (241, 200, 98), 'p': (88, 255, 145)}

    for id in os.listdir(path_to_imgs):
        if id[-3:] == 'jpg':
            print(f"Processing image {id[:-4]}")
            path = path_to_imgs + '/' + id
            path_to_txt = path_to_imgs + '/' + id[:-3] + 'txt'
            os.system(
                f'./darknet detector test {data} {cfg_file} {weights} {path} -save_labels -dont_show'
            )

            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            width, height = Image.fromarray(
                image, 'RGB').convert('L').size[0], Image.fromarray(
                    image, 'RGB').convert('L').size[1]

            with open(path_to_txt, 'r') as f:
                contents = f.read()
                contents = [
                    line.split(' ') for line in contents.split('\n')
                    if len(line) > 0
                ]
                detections = [[
                    width * float(line[1]), height * float(line[2]),
                    width * float(line[3]), height * float(line[4])
                ] for line in contents]
                detections = [[
                    contents[i][0],
                    darknet.bbox2points(detections[i])
                ] for i in range(len(detections))]
                detections = correct_confusions(detections)
                for i in range(len(detections)):
                    x1, y1, x2, y2 = detections[i][1]
                    if detections[i][0] == '0':
                        cv2.rectangle(image, (x1, y1), (x2, y2),
                                      color=colors['c'],
                                      thickness=2)
                    elif detections[i][0] == '1':
                        cv2.rectangle(image, (x1, y1), (x2, y2),
                                      color=colors['i'],
                                      thickness=2)
                    else:
                        cv2.rectangle(image, (x1, y1), (x2, y2),
                                      color=colors['p'],
                                      thickness=2)
                cv2.imwrite(dest_path + '/' + id, image)
                cv2_imshow(image)
Exemple #4
0
def save_one_patch_detection_json(patch,
                                  detections,
                                  class_names,
                                  save_res_json,
                                  b_percent=False):
    # patch (xoff,yoff ,xsize, ysize)
    objects = []
    bbox_list = []
    for label, confidence, bbox in detections:
        # print('yolo relative',bbox, confidence,label)
        bbox = darknet.bbox2points(bbox)  # to [xmin, ymin, xmax, ymax]
        # print('yolo xmin, ymin, xmax, ymax',bbox, confidence,label)

        #make sure # xmin >=0, ymin >=0, xmax<=xsize, ymax <= yszie
        bbox = [
            max(bbox[0], 0),
            max(bbox[1], 0),
            min(bbox[2], patch[2]),
            min(bbox[3], patch[3])
        ]
        # sometime, darknet went wrong, output many duplicate boxes, remove them
        if bbox in bbox_list:
            # print('remove duplicated')
            continue
        else:
            bbox_list.append(bbox)

        # sometime, darknet went wrong, output very thin box
        if bbox[0] == bbox[2] or bbox[1] == bbox[3]:
            # print('xmin == xmax or ymin=ymax')
            continue

        bbox = [
            bbox[0] + patch[0], bbox[1] + patch[1], bbox[2] + patch[0],
            bbox[3] + patch[1]
        ]  # to entire image coordinate

        if b_percent:
            confidence = round(confidence * 100, 2)
        object = {
            'class_id': class_names.index(label),
            'name': label,
            'bbox': bbox,
            'confidence': confidence
        }
        objects.append(object)

    json_data = json.dumps(objects, indent=2)
    with open(save_res_json, "w") as f_obj:
        f_obj.write(json_data)
Exemple #5
0
def rescale(detections, image, source_shape):
    s_w, s_h = source_shape  # source, eg 416x416
    t_h, t_w, _ = image.shape  # target
    w_scale = float(t_w) / s_w
    h_scale = float(t_h) / s_h
    res = []
    for label, confidence, bbox in detections:
        x, y, w, h = bbox
        x = x * w_scale
        y = y * h_scale
        w = w * w_scale
        h = h * h_scale
        left, top, right, bottom = darknet.bbox2points((x, y, w, h))
        res.append((left, top, right - left, bottom - top, confidence))
    return res
def get_detections(detections, image, source_shape):
    s_w, s_h = source_shape  # source, eg 416x416
    t_h, t_w, _ = image.shape  # target
    w_scale = float(t_w) / s_w
    h_scale = float(t_h) / s_h
    dets = []
    for label, confidence, bbox in detections:
        x, y, w, h = bbox
        x = x * w_scale
        y = y * h_scale
        w = w * w_scale
        h = h * h_scale
        left, top, right, bottom = darknet.bbox2points((x, y, w, h))
        dets.append([left, top, right, bottom, confidence])
    return np.asarray(dets, dtype=np.float32)
Exemple #7
0
def detect_figures(cfg_file='cfg/fig_det.cfg',
                   data='data/fig_det.data',
                   weights='backup/fig_det.weights',
                   path_to_imgs='./temp_imgs',
                   dest_path='./cropped_imgs'):
    """
    input: path to cfg-file, path to data-file, path to weights, path to image folder
    applies yolov4 model to each image to detect SEM figures in a given pdf page
    """
    os.system(f'mkdir {dest_path}')

    for id in os.listdir(path_to_imgs):
        if id[-3:] == 'jpg':
            print(f"Processing image {id[:-4]}")
            path = path_to_imgs + '/' + id
            path_to_txt = path_to_imgs + '/' + id[:-3] + 'txt'
            os.system(
                f'./darknet detector test {data} {cfg_file} {weights} {path} -save_labels -dont_show'
            )

            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            width, height = Image.fromarray(
                image, 'RGB').convert('L').size[0], Image.fromarray(
                    image, 'RGB').convert('L').size[1]

            with open(path_to_txt, 'r') as f:
                contents = f.read()
                contents = [
                    line.split(' ') for line in contents.split('\n')
                    if len(line) > 0
                ]
                detections = [[
                    width * float(line[1]), height * float(line[2]),
                    width * float(line[3]), height * float(line[4])
                ] for line in contents]
                detections = [[
                    contents[i][0],
                    darknet.bbox2points(detections[i])
                ] for i in range(len(detections)) if contents[i][0] == '0']
                for i in range(len(detections)):
                    x1, y1, x2, y2 = detections[i][1]
                    roi = image[y1:y2, x1:x2]
                    cv2.imwrite(dest_path + f'/{i}_' + id, roi)
                    cv2_imshow(roi)
def draw_boxes(detections, image, source_shape):
    s_w, s_h = source_shape  # source, eg 416x416
    t_h, t_w, _ = image.shape  # target
    w_scale = float(t_w) / s_w
    h_scale = float(t_h) / s_h

    for label, confidence, bbox in detections:
        x, y, w, h = bbox
        x = x * w_scale
        y = y * h_scale
        w = w * w_scale
        h = h * h_scale
        left, top, right, bottom = darknet.bbox2points((x, y, w, h))
        cv2.rectangle(image, (left, top), (right, bottom), (255, 0, 0), 1)
        cv2.putText(image, "{} [{:.2f}]".format(label, float(confidence)),
                    (left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                    (0, 255, 0), 2)
    return image
def save_annotations(name, network, image, detections, class_names):
    """
    Files saved with image_name.txt and relative coordinates
    """
    image = cv2.imread(name)

    width = darknet.network_width(network)
    height = darknet.network_height(network)

    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image_resized = cv2.resize(image_rgb, (width, height),
                               interpolation=cv2.INTER_LINEAR)

    print('big_image ', image.shape)
    print('small_image ', image_resized.shape)
    # image = orig_image

    scale_x = image.shape[1] / image_resized.shape[1]
    scale_y = image.shape[0] / image_resized.shape[0]

    file_name = name.split(".")[:-1][0] + ".txt"
    print(file_name)
    with open(file_name, "w") as f:
        print(file_name, len(detections))

        if (len(detections) == 0):
            f.write("0,0,0,0,0,0,-1,-1\n")
        else:
            for label, confidence, bbox in detections:

                left, top, right, bottom = darknet.bbox2points(
                    bbox, scale_x, scale_y)
                x = left
                y = top
                w = right - left
                h = bottom - top

                # x, y, w, h = convert2relative(image, bbox)
                print(x, y, w, h, float(0.99), label, -1, -1)
                label = class_names.index(label)
                f.write(
                    "{:.4f},{:.4f},{:.4f},{:.4f},{:.4f},{},{:n},{:n}\n".format(
                        x, y, w, h, float(0.99), label, -1, -1))
    def inference(flow_id: str, frame: object):
        image = frame_data_2_bytes(frame, width, height)
        darknet.copy_image_from_bytes(darknet_image, image)
        detections = darknet.detect_image(network,
                                          class_names,
                                          darknet_image,
                                          thresh=thresh)
        result = PyDetectionBox(frame_id=frame.frame_id, engine_id='darknet')
        for label, confidence, bbox in detections:
            left, top, right, bottom = darknet.bbox2points(bbox)
            result.add_box(category_id=labels_rev.get(label, ''),
                           category_label=label,
                           x1=left,
                           y1=top,
                           x2=right,
                           y2=left,
                           probability=float(confidence))
        darknet.free_image(darknet_image)

        return flow_id, result
Exemple #11
0
    def drawing(self):

        name_color = (138, 43, 226)
        random.seed(3)  # deterministic bbox colors
        #video = set_saved_video(cap, args.out_filename, (width, height))
        while self.cap.isOpened():
            frame_resized = self.frame_queue.get()
            detections = self.detections_queue.get()
            fps = self.fps_queue.get()

            if frame_resized is not None:

                #畫框 + 畫標籤
                image = darknet.draw_boxes(detections, frame_resized,
                                           self.class_colors)

                if self.Recognition_check == True:
                    if detections:
                        for label, confidence, bbox in detections:

                            left, top, right, bottom = darknet.bbox2points(
                                bbox)

                            face = image[top:bottom, left:right]

                            self.face = face

                            #進行人臉辨識
                            t1 = cv2.getTickCount()

                            scaled_arr = None
                            try:
                                scaled_arr = cv2_face(face)
                            except:
                                scaled_arr = None

                            if scaled_arr is not None:
                                feed_dict = {
                                    images_placeholder: scaled_arr,
                                    phase_train_placeholder: False,
                                    keep_probability_placeholder: 1.0
                                }
                                embs = sess.run(embeddings,
                                                feed_dict=feed_dict)
                                face_class = ['Others']
                                diff = []

                                #尋找最相近的人臉特徵
                                for emb in emb_arr:
                                    diff.append(
                                        np.mean(np.square(embs[0] - emb)))
                                min_diff = min(diff)

                                index = np.argmin(diff)

                                if min_diff < THRED:
                                    face_class[0] = class_arr[index]

                                t2 = cv2.getTickCount()
                                t = (t2 - t1) / cv2.getTickFrequency()

                                #把人名印在圖片上
                                cv2.putText(image, '{}'.format(face_class[0]),
                                            (left, top - 35),
                                            cv2.FONT_HERSHEY_SIMPLEX, 1,
                                            name_color, 2)

                                ntime = time.strftime("%Y/%m/%d %H:%M:%S",
                                                      time.localtime())

                                if self.clock % 100 == 0:
                                    self.recorded_people.clear()

                                print("recorded_people = ",
                                      self.recorded_people)

                                if face_class[0] != 'Others' and face_class[
                                        0] not in self.recorded_people:

                                    if self.clock % 20 == 0:
                                        #人名記錄起來
                                        self.recorded_people.append(
                                            face_class[0])

                                        #上傳資料庫search表
                                        record_data = {
                                            "user_name": face_class[0],
                                            "time": ntime,
                                            "mask": label
                                        }
                                        conn = requests.post(
                                            "http://140.136.150.100/record.php",
                                            data=record_data)
                                        #print(face_class[0],ntime)
                                        #print(conn.text)

                                #印上辨識時間 & 誤差
                                cv2.putText(image, '{:.4f}'.format(t),
                                            (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
                                            0.5, (255, 0, 255), 2)

                                cv2.putText(image, '{:.4f}'.format(min_diff),
                                            (100, 30),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                            (255, 0, 255), 2)

                self.YOLO_image_queue.put(image)  #把RGB圖片存起來
                self.clock += 1
                #print("cloock=",self.clock)

                if cv2.waitKey(fps) == 27:
                    break

        self.cap.release()
        print("Thread 3 stop")
        cv2.destroyAllWindows()
 def drawing(self):
     
     name_color = (138,43,226)
     random.seed(3)  # deterministic bbox colors
     #video = set_saved_video(cap, args.out_filename, (width, height))
     while self.cap.isOpened():
         frame_resized = self.frame_queue.get()     
         detections = self.detections_queue.get()
         fps = self.fps_queue.get()
         
         if frame_resized is not None:
             
             #畫框 + 畫標籤
             image = darknet.draw_boxes(detections, frame_resized, self.class_colors)
             
             #進行人臉辨識
             t1=time.time()
             
             for label, confidence, bbox in detections:
                         
                 left,top,right,bottom = darknet.bbox2points(bbox)
             
                 face = image[top:bottom,left:right]
                 
                 self.face = face
                 self.label_flag = label
                 
                 if self.Recognition_check == True:
                     if detections:
                         
                         face = self.face
                                                          
                         scaled_arr = None
                         try:
                             scaled_arr = cv2_face(face)
                         except:
                             scaled_arr = None
                             
                         if scaled_arr is not None:
                             
                             feed_dict = { images_placeholder: scaled_arr, phase_train_placeholder:False ,keep_probability_placeholder:1.0}
                             embs = sess.run(embeddings, feed_dict=feed_dict)
                             face_class=['Others']
                             diff = []
                             
                             #尋找最相近的人臉特徵
                             for emb in emb_arr:
                                 diff.append(np.mean(np.square(embs[0] - emb)))
                             
                             min_diff=min(diff)
                             index=np.argmin(diff)
                                   
                             if min_diff<Threshold: 
                                 face_class[0]=class_arr[index]
                                                                                                  
                             #把人名印在圖片上
                             cv2.putText(image, '{}'.format(face_class[0]), 
                                     (left,top - 50), 
                                     cv2.FONT_HERSHEY_SIMPLEX,
                                     1,name_color, 2)
                             
                             #把loss印在人臉附近
                             cv2.putText(image, 'loss:{:.4f}'.format(min_diff),(left,top - 25),
                             cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,204,0), 2)
                             
                             
                             #ntime = time.strftime("%Y/%m/%d %H:%M:%S", time.localtime())
                                                      
                             if self.clock % 120 == 0:
                                 self.recorded_people.clear()
                             
                             #print("recorded_people = ",self.recorded_people)
                             
                             if self.ui.tabWidget.currentIndex() == 0:
                                 if self.clock % 120 == 0:
                                     if face_class[0]!='Others' and face_class[0] not in self.recorded_people :
                                     
                                         #人名記錄起來
                                         self.recorded_people.append(face_class[0])
                                         
                                         #上傳資料庫search表
                                         T = time.localtime()
 
                                         record_data = {
                                               "user_name" : face_class[0],
                                               "year" : T.tm_year, 
                                               "month": T.tm_mon,
                                               "day"  : T.tm_mday,
                                               "hour" : T.tm_hour,
                                               "min"  : T.tm_min,
                                               "sec"  : T.tm_sec,
                                               "mask" : label,
                                               "table":'search'
                                         }
                                         conn = requests.post("http://140.136.150.100/record.php",data = record_data)
                                         #print(face_class[0],ntime)
                                         #print(conn.text)       
                                         self.show_dialog2 = 1
                                     
                                     if face_class[0] == 'Others':
                                         self.show_dialog3 = 1
                                         self.dialog3_counter += 1
                                     
                                     
                         
                 if self.Recognition_check == False:
                     
                     if self.ui.tabWidget.currentIndex() == 0:
                         if self.clock % 120 == 0:
                             #上傳資料庫search2表
                             T = time.localtime()
         
                             record_data = {
                                   "user_name" : 'Unknow',
                                   "year" : T.tm_year, 
                                   "month": T.tm_mon,
                                   "day"  : T.tm_mday,
                                   "hour" : T.tm_hour,
                                   "min"  : T.tm_min,
                                   "sec"  : T.tm_sec,
                                   "mask" : self.label_flag,
                                   "table":'search2'
                             }
                             conn = requests.post("http://140.136.150.100/record.php",data = record_data)
                             print(conn.text) 
                             self.show_dialog2 = 1    
             #全部處理完的時間點
             t2=time.time()
             t = int(1/(t2-t1+self.yolo_t))
             #印上辨識時間
             cv2.putText(image, 'FPS:{}'.format(t), (10, 20),
             cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,204,0), 1)
             
             self.YOLO_image_queue.put(image) #把RGB圖片存起來
             self.clock += 1
             #print("cloock=",self.clock)
             
             #if cv2.waitKey(fps) == 27:
                # break
 
     print("Thread 3 stop")
     self.cap.release()
Exemple #13
0
    def process_frame(self, frame):

        if self.initFlag is False:
            self.height, self.width, self.channels = frame.shape
            print('INITIALISED')
            print('VIDEO PROPERTIES:')
            print('     WIDTH:   ', self.width)
            print('     HEIGHT:  ', self.height)
            print('     CHANNELS:', self.channels)
            if self.videoFlag:
                fourcc = cv2.VideoWriter_fourcc(*'XVID')
                self.video = cv2.VideoWriter(self.output_file, fourcc, 30,
                                             (self.width, self.height))
            self.initFlag = True

        #print("STAMP: "+str(image.header.stamp.secs)+"."+str(image.header.stamp.nsecs))
        #print("SEQ:",image.header.seq)
        print("FRAME:", self.frame_id)
        self.frame_id += 1
        #print("TIME:",rospy.Time.now())

        # Process Image
        prev_time = time.time()

        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        detections = self.image_detection(frame)

        # Iterate through each detection and create BoundingBox message
        for class_name, confidence, bbox in detections:

            xmin, ymax, xmax, ymin = darknet.bbox2points(bbox)
            confidence = confidence
            class_name = class_name
            id = -1

            if self.displayFlag:
                colour = self.class_colours[class_name]
                left, top, right, bottom = darknet.bbox2points(bbox)
                cv2.rectangle(frame, (left, top), (right, bottom), colour, 2)
                cv2.putText(
                    frame,
                    str(class_name) + " [" + str(round(float(confidence), 1)) +
                    '%]', (left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                    colour, 2)

        print("DETECTION COUNT:", len(detections))

        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

        fps = round((1 / (time.time() - prev_time)), 1)
        #fps = int(1/(time.time() - self.prevTime))
        #self.prevTime = time.time()
        print("FPS:", fps)
        if self.displayFlag:
            window_name = "Darknet"
            cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
            #cv2.moveWindow(window_name, 0,0)
            cv2.resizeWindow(window_name, 640, 480)
            #cv2.resizeWindow(window_name, 1280,1024)
            #cv2.resizeWindow(window_name, 1280,800)
            cv2.imshow(window_name, frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                exit()
        print("test")

        if self.videoFlag:
            self.video.write(frame)