Exemple #1
0
def update_job_containers(event: Mapping, status: str,
                          job_container_name: str) -> None:
    if JobLifeCycle.is_done(status):
        # Remove the job monitoring
        job_uuid = event['metadata']['labels']['job_uuid']
        logger.info('Stop monitoring job_uuid: %s', job_uuid)
        RedisJobContainers.remove_job(job_uuid)

    if event['status']['container_statuses'] is None:
        return

    def get_container_id(container_id):
        if not container_id:
            return None
        if container_id.startswith('docker://'):
            return container_id[len('docker://'):]
        return container_id

    for container_status in event['status']['container_statuses']:
        if container_status['name'] != job_container_name:
            continue

        container_id = get_container_id(container_status['container_id'])
        if container_id:
            job_uuid = event['metadata']['labels']['job_uuid']
            if container_status['state']['running'] is not None:
                logger.info('Monitoring (container_id, job_uuid): (%s, %s)',
                            container_id, job_uuid)
                RedisJobContainers.monitor(container_id=container_id,
                                           job_uuid=job_uuid)
            else:

                RedisJobContainers.remove_container(container_id=container_id)
Exemple #2
0
def get_container_resources(node, container, gpu_resources):
    # Check if the container is running
    if container.status != ContainerStatuses.RUNNING:
        logger.debug("`%s` container is not running", container.name)
        RedisJobContainers.remove_container(container.id)
        return

    job_uuid, experiment_uuid = RedisJobContainers.get_job(container.id)

    if not job_uuid:
        logger.debug("`%s` container is not recognised", container.name)
        return

    logger.debug(
        "Streaming resources for container %s in (job, experiment) (`%s`, `%s`) ",
        container.id, job_uuid, experiment_uuid)

    try:
        stats = container.stats(decode=True, stream=False)
    except json.decoder.JSONDecodeError:
        logger.info("Error streaming states for `%s`", container.name)
    except NotFound:
        logger.debug("`%s` was not found", container.name)
        RedisJobContainers.remove_container(container.id)
        return
    except requests.ReadTimeout:
        return

    precpu_stats = stats['precpu_stats']
    cpu_stats = stats['cpu_stats']

    pre_total_usage = float(precpu_stats['cpu_usage']['total_usage'])
    total_usage = float(cpu_stats['cpu_usage']['total_usage'])
    delta_total_usage = total_usage - pre_total_usage

    pre_system_cpu_usage = float(precpu_stats['system_cpu_usage'])
    system_cpu_usage = float(cpu_stats['system_cpu_usage'])
    delta_system_cpu_usage = system_cpu_usage - pre_system_cpu_usage

    percpu_usage = cpu_stats['cpu_usage']['percpu_usage']
    num_cpu_cores = len(percpu_usage)
    if num_cpu_cores >= node.cpu * 1.5:
        logger.warning('Docker reporting num cpus `%s` and kubernetes reporting `%s`',
                       num_cpu_cores, node.cpu)
        num_cpu_cores = node.cpu
    cpu_percentage = 0.
    percpu_percentage = [0.] * num_cpu_cores
    if delta_total_usage > 0 and delta_system_cpu_usage > 0:
        cpu_percentage = (delta_total_usage / delta_system_cpu_usage) * num_cpu_cores * 100.0
        percpu_percentage = [cpu_usage / total_usage * cpu_percentage for cpu_usage in percpu_usage]

    memory_used = int(stats['memory_stats']['usage'])
    memory_limit = int(stats['memory_stats']['limit'])

    container_gpu_resources = None
    if gpu_resources:
        gpu_indices = get_container_gpu_indices(container)
        container_gpu_resources = [gpu_resources[gpu_indice] for gpu_indice in gpu_indices]

    return ContainerResourcesConfig.from_dict({
        'job_uuid': job_uuid,
        'job_name': job_uuid,  # it will be updated during the streaming
        'experiment_uuid': experiment_uuid,
        'container_id': container.id,
        'cpu_percentage': cpu_percentage,
        'n_cpus': num_cpu_cores,
        'percpu_percentage': percpu_percentage,
        'memory_used': memory_used,
        'memory_limit': memory_limit,
        'gpu_resources': container_gpu_resources
    })