def update_job_containers(event: Mapping, status: str, job_container_name: str) -> None: if JobLifeCycle.is_done(status): # Remove the job monitoring job_uuid = event['metadata']['labels']['job_uuid'] logger.info('Stop monitoring job_uuid: %s', job_uuid) RedisJobContainers.remove_job(job_uuid) if event['status']['container_statuses'] is None: return def get_container_id(container_id): if not container_id: return None if container_id.startswith('docker://'): return container_id[len('docker://'):] return container_id for container_status in event['status']['container_statuses']: if container_status['name'] != job_container_name: continue container_id = get_container_id(container_status['container_id']) if container_id: job_uuid = event['metadata']['labels']['job_uuid'] if container_status['state']['running'] is not None: logger.info('Monitoring (container_id, job_uuid): (%s, %s)', container_id, job_uuid) RedisJobContainers.monitor(container_id=container_id, job_uuid=job_uuid) else: RedisJobContainers.remove_container(container_id=container_id)
def get_container_resources(node, container, gpu_resources): # Check if the container is running if container.status != ContainerStatuses.RUNNING: logger.debug("`%s` container is not running", container.name) RedisJobContainers.remove_container(container.id) return job_uuid, experiment_uuid = RedisJobContainers.get_job(container.id) if not job_uuid: logger.debug("`%s` container is not recognised", container.name) return logger.debug( "Streaming resources for container %s in (job, experiment) (`%s`, `%s`) ", container.id, job_uuid, experiment_uuid) try: stats = container.stats(decode=True, stream=False) except json.decoder.JSONDecodeError: logger.info("Error streaming states for `%s`", container.name) except NotFound: logger.debug("`%s` was not found", container.name) RedisJobContainers.remove_container(container.id) return except requests.ReadTimeout: return precpu_stats = stats['precpu_stats'] cpu_stats = stats['cpu_stats'] pre_total_usage = float(precpu_stats['cpu_usage']['total_usage']) total_usage = float(cpu_stats['cpu_usage']['total_usage']) delta_total_usage = total_usage - pre_total_usage pre_system_cpu_usage = float(precpu_stats['system_cpu_usage']) system_cpu_usage = float(cpu_stats['system_cpu_usage']) delta_system_cpu_usage = system_cpu_usage - pre_system_cpu_usage percpu_usage = cpu_stats['cpu_usage']['percpu_usage'] num_cpu_cores = len(percpu_usage) if num_cpu_cores >= node.cpu * 1.5: logger.warning('Docker reporting num cpus `%s` and kubernetes reporting `%s`', num_cpu_cores, node.cpu) num_cpu_cores = node.cpu cpu_percentage = 0. percpu_percentage = [0.] * num_cpu_cores if delta_total_usage > 0 and delta_system_cpu_usage > 0: cpu_percentage = (delta_total_usage / delta_system_cpu_usage) * num_cpu_cores * 100.0 percpu_percentage = [cpu_usage / total_usage * cpu_percentage for cpu_usage in percpu_usage] memory_used = int(stats['memory_stats']['usage']) memory_limit = int(stats['memory_stats']['limit']) container_gpu_resources = None if gpu_resources: gpu_indices = get_container_gpu_indices(container) container_gpu_resources = [gpu_resources[gpu_indice] for gpu_indice in gpu_indices] return ContainerResourcesConfig.from_dict({ 'job_uuid': job_uuid, 'job_name': job_uuid, # it will be updated during the streaming 'experiment_uuid': experiment_uuid, 'container_id': container.id, 'cpu_percentage': cpu_percentage, 'n_cpus': num_cpu_cores, 'percpu_percentage': percpu_percentage, 'memory_used': memory_used, 'memory_limit': memory_limit, 'gpu_resources': container_gpu_resources })