def initialize_node(node, children): if isinstance(node, Gaussian): d = T.shape(node) return Gaussian([T.eye(d[-1], batch_shape=d[:-1]), T.random_normal(d)]) elif isinstance(node, IW): d = T.shape(node) return IW([(T.to_float(d[-1]) + 1) * T.eye(d[-1], batch_shape=d[:-2]), T.to_float(d[-1]) + 1])
def initialize_objective(self): H, ds, da = self.horizon, self.ds, self.da if self.time_varying: A = T.concatenate([T.eye(ds), T.zeros([ds, da])], -1) self.A = T.variable(A[None] + 1e-2 * T.random_normal([H - 1, ds, ds + da])) self.Q_log_diag = T.variable(T.random_normal([H - 1, ds]) + 1) self.Q = T.matrix_diag(T.exp(self.Q_log_diag)) else: A = T.concatenate([T.eye(ds), T.zeros([ds, da])], -1) self.A = T.variable(A + 1e-2 * T.random_normal([ds, ds + da])) self.Q_log_diag = T.variable(T.random_normal([ds]) + 1) self.Q = T.matrix_diag(T.exp(self.Q_log_diag))
def test_log_likelihood1(self): d = 2 data = np.tile(np.eye(d)[None], [10, 1, 1]) sigma = IW([T.eye(d), d + 1]) np.testing.assert_almost_equal( self.session.run(sigma.log_likelihood(T.to_float(data))), invwishart(scale=np.eye(2), df=d + 1).logpdf(data.T), 5)
def encode(self, q_X, q_A, dynamics_stats=None): if self.smooth: state_prior = stats.Gaussian([ T.eye(self.ds), T.zeros(self.ds) ]) if dynamics_stats is None: dynamics_stats = self.sufficient_statistics() q_X = stats.LDS( (dynamics_stats, state_prior, q_X, q_A.expected_value(), self.horizon) ) return q_X, q_A
def initialize_objective(self): H, ds, da = self.horizon, self.ds, self.da if self.time_varying: A = T.concatenate( [T.eye(ds, batch_shape=[H - 1]), T.zeros([H - 1, ds, da])], -1) self.A_prior = stats.MNIW([ 2 * T.eye(ds, batch_shape=[H - 1]), A, T.eye(ds + da, batch_shape=[H - 1]), T.to_float(ds + 2) * T.ones([H - 1]) ], parameter_type='regular') self.A_variational = stats.MNIW(list( map( T.variable, stats.MNIW.regular_to_natural([ 2 * T.eye(ds, batch_shape=[H - 1]), A + 1e-2 * T.random_normal([H - 1, ds, ds + da]), T.eye(ds + da, batch_shape=[H - 1]), T.to_float(ds + 2) * T.ones([H - 1]) ]))), parameter_type='natural') else: A = T.concatenate([T.eye(ds), T.zeros([ds, da])], -1) self.A_prior = stats.MNIW( [2 * T.eye(ds), A, T.eye(ds + da), T.to_float(ds + 2)], parameter_type='regular') self.A_variational = stats.MNIW(list( map( T.variable, stats.MNIW.regular_to_natural([ 2 * T.eye(ds), A + 1e-2 * T.random_normal([ds, ds + da]), T.eye(ds + da), T.to_float(ds + 2) ]))), parameter_type='natural')
def posterior_dynamics(self, q_X, q_A, data_strength=1.0, max_iter=200, tol=1e-3): if self.smooth: if self.time_varying: prior_dyn = stats.MNIW( self.A_variational.get_parameters('natural'), 'natural') else: natparam = self.A_variational.get_parameters('natural') prior_dyn = stats.MNIW([ T.tile(natparam[0][None], [self.horizon - 1, 1, 1]), T.tile(natparam[1][None], [self.horizon - 1, 1, 1]), T.tile(natparam[2][None], [self.horizon - 1, 1, 1]), T.tile(natparam[3][None], [self.horizon - 1]), ], 'natural') state_prior = stats.Gaussian([T.eye(self.ds), T.zeros(self.ds)]) aaT, a = stats.Gaussian.unpack( q_A.expected_sufficient_statistics()) aaT, a = aaT[:, :-1], a[:, :-1] ds, da = self.ds, self.da initial_dyn_natparam = prior_dyn.get_parameters('natural') initial_X_natparam = stats.LDS( (self.sufficient_statistics(), state_prior, q_X, q_A.expected_value(), self.horizon), 'internal').get_parameters('natural') def em(i, q_dyn_natparam, q_X_natparam, _, curr_elbo): q_X_ = stats.LDS(q_X_natparam, 'natural') ess = q_X_.expected_sufficient_statistics() batch_size = T.shape(ess)[0] yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds] xxT = ess[..., :-1, :ds, :ds] yxT = ess[..., :-1, ds:2 * ds, :ds] x = ess[..., :-1, -1, :ds] y = ess[..., :-1, -1, ds:2 * ds] xaT = T.outer(x, a) yaT = T.outer(y, a) xaxaT = T.concatenate([ T.concatenate([xxT, xaT], -1), T.concatenate([T.matrix_transpose(xaT), aaT], -1), ], -2) ess = [ yyT, T.concatenate([yxT, yaT], -1), xaxaT, T.ones([batch_size, self.horizon - 1]) ] q_dyn_natparam = [ T.sum(a, [0]) * data_strength + b for a, b in zip(ess, initial_dyn_natparam) ] q_dyn_ = stats.MNIW(q_dyn_natparam, 'natural') q_stats = q_dyn_.expected_sufficient_statistics() p_X = stats.LDS((q_stats, state_prior, None, q_A.expected_value(), self.horizon)) q_X_ = stats.LDS((q_stats, state_prior, q_X, q_A.expected_value(), self.horizon)) elbo = (T.sum(stats.kl_divergence(q_X_, p_X)) + T.sum(stats.kl_divergence(q_dyn_, prior_dyn))) return i + 1, q_dyn_.get_parameters( 'natural'), q_X_.get_parameters('natural'), curr_elbo, elbo def cond(i, _, __, prev_elbo, curr_elbo): with T.core.control_dependencies([T.core.print(curr_elbo)]): prev_elbo = T.core.identity(prev_elbo) return T.logical_and( T.abs(curr_elbo - prev_elbo) > tol, i < max_iter) result = T.while_loop( cond, em, [ 0, initial_dyn_natparam, initial_X_natparam, T.constant(-np.inf), T.constant(0.) ], back_prop=False) pd = stats.MNIW(result[1], 'natural') sigma, mu = pd.expected_value() q_X = stats.LDS(result[2], 'natural') return ((mu, sigma), pd.expected_sufficient_statistics()), (q_X, q_A) else: q_Xt = q_X.__class__([ q_X.get_parameters('regular')[0][:, :-1], q_X.get_parameters('regular')[1][:, :-1], ]) q_At = q_A.__class__([ q_A.get_parameters('regular')[0][:, :-1], q_A.get_parameters('regular')[1][:, :-1], ]) q_Xt1 = q_X.__class__([ q_X.get_parameters('regular')[0][:, 1:], q_X.get_parameters('regular')[1][:, 1:], ]) (XtAt_XtAtT, XtAt), (Xt1_Xt1T, Xt1) = self.get_statistics(q_Xt, q_At, q_Xt1) batch_size = T.shape(XtAt)[0] ess = [ Xt1_Xt1T, T.einsum('nha,nhb->nhba', XtAt, Xt1), XtAt_XtAtT, T.ones([batch_size, self.horizon - 1]) ] if self.time_varying: posterior = stats.MNIW([ T.sum(a, [0]) * data_strength + b for a, b in zip( ess, self.A_variational.get_parameters('natural')) ], 'natural') else: posterior = stats.MNIW([ T.sum(a, [0]) * data_strength + b[None] for a, b in zip( ess, self.A_variational.get_parameters('natural')) ], 'natural') Q, A = posterior.expected_value() return (A, Q), q_X
yt, yt1 = data[:, :-1], data[:, 1:] yt, yt1 = yt.reshape([-1, D]), yt1.reshape([-1, D]) transition_net = Tanh(D, 500) >> Tanh(500) >> nn.Gaussian(D) transition_net.initialize() rec_net = Tanh(D, 500) >> Tanh(500) >> nn.Gaussian(D) rec_net.initialize() Yt = T.placeholder(T.floatx(), [None, D]) Yt1 = T.placeholder(T.floatx(), [None, D]) batch_size = T.shape(Yt)[0] num_batches = N / T.to_float(batch_size) Yt_message = Gaussian.pack([ T.tile(T.eye(D)[None] * noise, [batch_size, 1, 1]), T.einsum('ab,ib->ia', T.eye(D) * noise, Yt) ]) Yt1_message = Gaussian.pack([ T.tile(T.eye(D)[None] * noise, [batch_size, 1, 1]), T.einsum('ab,ib->ia', T.eye(D) * noise, Yt1) ]) transition = Gaussian(transition_net(Yt)).expected_value() max_iter = 1000 tol = 1e-5 def cond(i, prev_elbo, elbo, qxt, qxt1):
A = np.zeros([H - 1, ds, ds]) for t in range(H - 1): theta = 0.5 * np.pi * np.random.rand() rot = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) out = np.zeros((ds, ds)) out[:2, :2] = rot q = np.linalg.qr(np.random.randn(ds, ds))[0] A[t] = q.dot(out).dot(q.T) A = T.constant(A, dtype=T.floatx()) B = T.constant(0.1 * np.random.randn(H - 1, ds, da), dtype=T.floatx()) Q = T.matrix_diag( np.random.uniform(low=0.9, high=1.1, size=[H - 1, ds]).astype(np.float32)) prior = stats.Gaussian([T.eye(ds), T.zeros(ds)]) p_S = stats.Gaussian([ T.eye(ds, batch_shape=[N, H]), T.constant(np.random.randn(N, H, ds), dtype=T.floatx()) ]) potentials = stats.Gaussian.unpack( p_S.get_parameters('natural')) + [p_S.log_z()] actions = T.constant(np.random.randn(N, H, da), dtype=T.floatx()) lds = stats.LDS(((A, B, Q), prior, potentials, actions)) sess = T.interactive_session() np.set_printoptions(suppress=True, precision=2, edgeitems=100,