Пример #1
0
def initialize_node(node, children):
    if isinstance(node, Gaussian):
        d = T.shape(node)
        return Gaussian([T.eye(d[-1], batch_shape=d[:-1]), T.random_normal(d)])
    elif isinstance(node, IW):
        d = T.shape(node)
        return IW([(T.to_float(d[-1]) + 1) * T.eye(d[-1], batch_shape=d[:-2]),
                   T.to_float(d[-1]) + 1])
Пример #2
0
 def initialize_objective(self):
     H, ds, da = self.horizon, self.ds, self.da
     if self.time_varying:
         A = T.concatenate([T.eye(ds), T.zeros([ds, da])], -1)
         self.A = T.variable(A[None] + 1e-2 * T.random_normal([H - 1, ds, ds + da]))
         self.Q_log_diag = T.variable(T.random_normal([H - 1, ds]) + 1)
         self.Q = T.matrix_diag(T.exp(self.Q_log_diag))
     else:
         A = T.concatenate([T.eye(ds), T.zeros([ds, da])], -1)
         self.A = T.variable(A + 1e-2 * T.random_normal([ds, ds + da]))
         self.Q_log_diag = T.variable(T.random_normal([ds]) + 1)
         self.Q = T.matrix_diag(T.exp(self.Q_log_diag))
Пример #3
0
 def test_log_likelihood1(self):
     d = 2
     data = np.tile(np.eye(d)[None], [10, 1, 1])
     sigma = IW([T.eye(d), d + 1])
     np.testing.assert_almost_equal(
         self.session.run(sigma.log_likelihood(T.to_float(data))),
         invwishart(scale=np.eye(2), df=d + 1).logpdf(data.T), 5)
Пример #4
0
 def encode(self, q_X, q_A, dynamics_stats=None):
     if self.smooth:
         state_prior = stats.Gaussian([
             T.eye(self.ds),
             T.zeros(self.ds)
         ])
         if dynamics_stats is None:
             dynamics_stats = self.sufficient_statistics()
         q_X = stats.LDS(
             (dynamics_stats, state_prior, q_X, q_A.expected_value(), self.horizon)
         )
     return q_X, q_A
Пример #5
0
 def initialize_objective(self):
     H, ds, da = self.horizon, self.ds, self.da
     if self.time_varying:
         A = T.concatenate(
             [T.eye(ds, batch_shape=[H - 1]),
              T.zeros([H - 1, ds, da])], -1)
         self.A_prior = stats.MNIW([
             2 * T.eye(ds, batch_shape=[H - 1]), A,
             T.eye(ds + da, batch_shape=[H - 1]),
             T.to_float(ds + 2) * T.ones([H - 1])
         ],
                                   parameter_type='regular')
         self.A_variational = stats.MNIW(list(
             map(
                 T.variable,
                 stats.MNIW.regular_to_natural([
                     2 * T.eye(ds, batch_shape=[H - 1]),
                     A + 1e-2 * T.random_normal([H - 1, ds, ds + da]),
                     T.eye(ds + da, batch_shape=[H - 1]),
                     T.to_float(ds + 2) * T.ones([H - 1])
                 ]))),
                                         parameter_type='natural')
     else:
         A = T.concatenate([T.eye(ds), T.zeros([ds, da])], -1)
         self.A_prior = stats.MNIW(
             [2 * T.eye(ds), A,
              T.eye(ds + da),
              T.to_float(ds + 2)],
             parameter_type='regular')
         self.A_variational = stats.MNIW(list(
             map(
                 T.variable,
                 stats.MNIW.regular_to_natural([
                     2 * T.eye(ds),
                     A + 1e-2 * T.random_normal([ds, ds + da]),
                     T.eye(ds + da),
                     T.to_float(ds + 2)
                 ]))),
                                         parameter_type='natural')
Пример #6
0
    def posterior_dynamics(self,
                           q_X,
                           q_A,
                           data_strength=1.0,
                           max_iter=200,
                           tol=1e-3):
        if self.smooth:
            if self.time_varying:
                prior_dyn = stats.MNIW(
                    self.A_variational.get_parameters('natural'), 'natural')
            else:
                natparam = self.A_variational.get_parameters('natural')
                prior_dyn = stats.MNIW([
                    T.tile(natparam[0][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[1][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[2][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[3][None], [self.horizon - 1]),
                ], 'natural')
            state_prior = stats.Gaussian([T.eye(self.ds), T.zeros(self.ds)])
            aaT, a = stats.Gaussian.unpack(
                q_A.expected_sufficient_statistics())
            aaT, a = aaT[:, :-1], a[:, :-1]
            ds, da = self.ds, self.da

            initial_dyn_natparam = prior_dyn.get_parameters('natural')
            initial_X_natparam = stats.LDS(
                (self.sufficient_statistics(), state_prior, q_X,
                 q_A.expected_value(), self.horizon),
                'internal').get_parameters('natural')

            def em(i, q_dyn_natparam, q_X_natparam, _, curr_elbo):
                q_X_ = stats.LDS(q_X_natparam, 'natural')
                ess = q_X_.expected_sufficient_statistics()
                batch_size = T.shape(ess)[0]
                yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds]
                xxT = ess[..., :-1, :ds, :ds]
                yxT = ess[..., :-1, ds:2 * ds, :ds]
                x = ess[..., :-1, -1, :ds]
                y = ess[..., :-1, -1, ds:2 * ds]
                xaT = T.outer(x, a)
                yaT = T.outer(y, a)
                xaxaT = T.concatenate([
                    T.concatenate([xxT, xaT], -1),
                    T.concatenate([T.matrix_transpose(xaT), aaT], -1),
                ], -2)
                ess = [
                    yyT,
                    T.concatenate([yxT, yaT], -1), xaxaT,
                    T.ones([batch_size, self.horizon - 1])
                ]
                q_dyn_natparam = [
                    T.sum(a, [0]) * data_strength + b
                    for a, b in zip(ess, initial_dyn_natparam)
                ]
                q_dyn_ = stats.MNIW(q_dyn_natparam, 'natural')
                q_stats = q_dyn_.expected_sufficient_statistics()
                p_X = stats.LDS((q_stats, state_prior, None,
                                 q_A.expected_value(), self.horizon))
                q_X_ = stats.LDS((q_stats, state_prior, q_X,
                                  q_A.expected_value(), self.horizon))
                elbo = (T.sum(stats.kl_divergence(q_X_, p_X)) +
                        T.sum(stats.kl_divergence(q_dyn_, prior_dyn)))
                return i + 1, q_dyn_.get_parameters(
                    'natural'), q_X_.get_parameters('natural'), curr_elbo, elbo

            def cond(i, _, __, prev_elbo, curr_elbo):
                with T.core.control_dependencies([T.core.print(curr_elbo)]):
                    prev_elbo = T.core.identity(prev_elbo)
                return T.logical_and(
                    T.abs(curr_elbo - prev_elbo) > tol, i < max_iter)

            result = T.while_loop(
                cond,
                em, [
                    0, initial_dyn_natparam, initial_X_natparam,
                    T.constant(-np.inf),
                    T.constant(0.)
                ],
                back_prop=False)
            pd = stats.MNIW(result[1], 'natural')
            sigma, mu = pd.expected_value()
            q_X = stats.LDS(result[2], 'natural')
            return ((mu, sigma), pd.expected_sufficient_statistics()), (q_X,
                                                                        q_A)
        else:
            q_Xt = q_X.__class__([
                q_X.get_parameters('regular')[0][:, :-1],
                q_X.get_parameters('regular')[1][:, :-1],
            ])
            q_At = q_A.__class__([
                q_A.get_parameters('regular')[0][:, :-1],
                q_A.get_parameters('regular')[1][:, :-1],
            ])
            q_Xt1 = q_X.__class__([
                q_X.get_parameters('regular')[0][:, 1:],
                q_X.get_parameters('regular')[1][:, 1:],
            ])
            (XtAt_XtAtT, XtAt), (Xt1_Xt1T,
                                 Xt1) = self.get_statistics(q_Xt, q_At, q_Xt1)
            batch_size = T.shape(XtAt)[0]
            ess = [
                Xt1_Xt1T,
                T.einsum('nha,nhb->nhba', XtAt, Xt1), XtAt_XtAtT,
                T.ones([batch_size, self.horizon - 1])
            ]
            if self.time_varying:
                posterior = stats.MNIW([
                    T.sum(a, [0]) * data_strength + b for a, b in zip(
                        ess, self.A_variational.get_parameters('natural'))
                ], 'natural')
            else:
                posterior = stats.MNIW([
                    T.sum(a, [0]) * data_strength + b[None] for a, b in zip(
                        ess, self.A_variational.get_parameters('natural'))
                ], 'natural')
            Q, A = posterior.expected_value()
            return (A, Q), q_X
Пример #7
0
yt, yt1 = data[:, :-1], data[:, 1:]
yt, yt1 = yt.reshape([-1, D]), yt1.reshape([-1, D])

transition_net = Tanh(D, 500) >> Tanh(500) >> nn.Gaussian(D)
transition_net.initialize()

rec_net = Tanh(D, 500) >> Tanh(500) >> nn.Gaussian(D)
rec_net.initialize()

Yt = T.placeholder(T.floatx(), [None, D])
Yt1 = T.placeholder(T.floatx(), [None, D])
batch_size = T.shape(Yt)[0]
num_batches = N / T.to_float(batch_size)

Yt_message = Gaussian.pack([
    T.tile(T.eye(D)[None] * noise, [batch_size, 1, 1]),
    T.einsum('ab,ib->ia',
             T.eye(D) * noise, Yt)
])
Yt1_message = Gaussian.pack([
    T.tile(T.eye(D)[None] * noise, [batch_size, 1, 1]),
    T.einsum('ab,ib->ia',
             T.eye(D) * noise, Yt1)
])
transition = Gaussian(transition_net(Yt)).expected_value()

max_iter = 1000
tol = 1e-5


def cond(i, prev_elbo, elbo, qxt, qxt1):
Пример #8
0
A = np.zeros([H - 1, ds, ds])
for t in range(H - 1):
    theta = 0.5 * np.pi * np.random.rand()
    rot = np.array([[np.cos(theta), -np.sin(theta)],
                    [np.sin(theta), np.cos(theta)]])
    out = np.zeros((ds, ds))
    out[:2, :2] = rot
    q = np.linalg.qr(np.random.randn(ds, ds))[0]
    A[t] = q.dot(out).dot(q.T)
A = T.constant(A, dtype=T.floatx())

B = T.constant(0.1 * np.random.randn(H - 1, ds, da), dtype=T.floatx())
Q = T.matrix_diag(
    np.random.uniform(low=0.9, high=1.1, size=[H - 1, ds]).astype(np.float32))

prior = stats.Gaussian([T.eye(ds), T.zeros(ds)])
p_S = stats.Gaussian([
    T.eye(ds, batch_shape=[N, H]),
    T.constant(np.random.randn(N, H, ds), dtype=T.floatx())
])
potentials = stats.Gaussian.unpack(
    p_S.get_parameters('natural')) + [p_S.log_z()]
actions = T.constant(np.random.randn(N, H, da), dtype=T.floatx())

lds = stats.LDS(((A, B, Q), prior, potentials, actions))

sess = T.interactive_session()

np.set_printoptions(suppress=True,
                    precision=2,
                    edgeitems=100,