Exemple #1
0
def runpipeline(pl, convdict, conf):
    """runs the quicklook pipeline as configured

    Args:
        pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding
            qas for that pa
        convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file
            but convdict["IMAGE"] is like desispec.image.Image object and so on.
            details in setup_pipeline method below for examples.
        conf: a configured dictionary, read from the configuration yaml file.
            e.g: conf=configdict=yaml.load(open('configfile.yaml','rb'))
    """

    qlog = qllogger.QLLogger("QuickLook", 20)
    log = qlog.getlog()
    hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"])

    inp = convdict["rawimage"]
    paconf = conf["PipeLine"]
    qlog = qllogger.QLLogger("QuickLook", 0)
    log = qlog.getlog()
    for s, step in enumerate(pl):
        log.info("Starting to run step %s" % (paconf[s]["StepName"]))
        pa = step[0]
        pargs = mapkeywords(step[0].config["kwargs"], convdict)
        try:
            hb.start("Running %s" % (step[0].name))
            inp = pa(inp, **pargs)
        except Exception as e:
            log.critical("Failed to run PA %s error was %s" %
                         (step[0].name, e))
            sys.exit("Failed to run PA %s" % (step[0].name))
        qaresult = {}
        for qa in step[1]:
            try:
                qargs = mapkeywords(qa.config["kwargs"], convdict)
                hb.start("Running %s" % (qa.name))
                res = qa(inp, **qargs)
                log.debug("%s %s" % (qa.name, inp))
                qaresult[qa.name] = res
            except Exception as e:
                log.warning("Failed to run QA %s error was %s" % (qa.name, e))
        if len(qaresult):
            yaml.dump(qaresult, open(paconf[s]["OutputFile"], "wb"))
            hb.stop("Step %s finished. Output is in %s " %
                    (paconf[s]["StepName"], paconf[s]["OutputFile"]))
        else:
            hb.stop("Step %s finished." % (paconf[s]["StepName"]))
    hb.stop("Pipeline processing finished. Serializing result")
    return inp
Exemple #2
0
def setup_pipeline(config):
    """
    Given a configuration from QLF, this sets up a pipeline [pa,qa] and also returns a
    conversion dictionary from the configuration dictionary so that Pipeline steps (PA) can
    take them. This is required for runpipeline.
    """
    import astropy.io.fits as fits
    import desispec.io.fibermap as fibIO
    import desispec.io.sky as skyIO
    import desispec.io.fiberflat as ffIO
    import desispec.fiberflat as ff
    import desispec.io.image as imIO
    import desispec.image as im
    import desispec.io.frame as frIO
    import desispec.frame as dframe
    from desispec.quicklook import procalgs
    from desispec.boxcar import do_boxcar

    qlog=qllogger.QLLogger("QuickLook",20)
    log=qlog.getlog()
    if config is None:
        return None
    log.info("Reading Configuration")
    if "RawImage" not in config:
        log.critical("Config is missing \"RawImage\" key.")
        sys.exit("Missing \"RawImage\" key.")
    inpname=config["RawImage"]
    if "FiberMap" not in config:
        log.critical("Config is missing \"FiberMap\" key.")
        sys.exit("Missing \"FiberMap\" key.")
    fibname=config["FiberMap"]
    proctype="Exposure"
    if "Camera" in config:
        camera=config["Camera"]
    if "DataType" in config:
        proctype=config["DataType"]
    debuglevel=20
    if "DebugLevel" in config:
        debuglevel=config["DebugLevel"]
        log.setLevel(debuglevel)
    hbeat=QLHB.QLHeartbeat(log,config["Period"],config["Timeout"])
    if config["Timeout"]> 200.0:
        log.warning("Heartbeat timeout exceeding 200.0 seconds")
    dumpintermediates=False
    if "DumpIntermediates" in config:
        dumpintermediates=config["DumpIntermediates"]

    biasimage=None #- This will be the converted dictionary key
    biasfile=None
    if "BiasImage" in config:
        biasfile=config["BiasImage"]

    darkimage=None
    darkfile=None
    if "DarkImage" in config:
        darkfile=config["DarkImage"]

    pixelflatfile=None
    pixflatimage=None
    if "PixelFlat" in config:
        pixelflatfile=config["PixelFlat"]

    fiberflatimagefile=None
    fiberflatimage=None
    if "FiberFlatImage" in config:
        fiberflatimagefile=config["FiberFlatImage"]

    arclampimagefile=None
    arclampimage=None
    if "ArcLampImage" in config:
        arclampimagefile=config["ArcLampImage"]

    fiberflatfile=None
    fiberflat=None
    if "FiberFlatFile" in config:
        if config["Flavor"] == 'arcs':
            pass
        else:
            fiberflatfile=config["FiberFlatFile"]

    skyfile=None
    skyimage=None
    if "SkyFile" in config:
        skyfile=config["SkyFile"]

    psf=None
    if config["Flavor"] == 'arcs':
        if not os.path.exists(os.path.join(os.environ['QL_SPEC_REDUX'],'calib2d','psf',config["Night"])):
            os.mkdir(os.path.join(os.environ['QL_SPEC_REDUX'],'calib2d','psf',config["Night"]))
        pass
    elif "PSFFile" in config:
        #from specter.psf import load_psf
        import desispec.psf
        psf=desispec.psf.PSF(config["PSFFile"])
        #psf=load_psf(config["PSFFile"])

    if "basePath" in config:
        basePath=config["basePath"]

    hbeat.start("Reading input file {}".format(inpname))
    inp=fits.open(inpname) #- reading raw image directly from astropy.io.fits
    hbeat.start("Reading fiberMap file {}".format(fibname))
    fibfile=fibIO.read_fibermap(fibname)
    fibhdr=fibfile.meta

    convdict={"FiberMap":fibfile}

    if psf is not None:
        convdict["PSFFile"]=psf

    if biasfile is not None:
        hbeat.start("Reading Bias Image {}".format(biasfile))
        biasimage=imIO.read_image(biasfile)
        convdict["BiasImage"]=biasimage

    if darkfile is not None:
        hbeat.start("Reading Dark Image {}".format(darkfile))
        darkimage=imIO.read_image(darkfile)
        convdict["DarkImage"]=darkimage

    if pixelflatfile:
        hbeat.start("Reading PixelFlat Image {}".format(pixelflatfile))
        pixelflatimage=imIO.read_image(pixelflatfile)
        convdict["PixelFlat"]=pixelflatimage

    if fiberflatimagefile:
        hbeat.start("Reading FiberFlat Image {}".format(fiberflatimagefile))
        fiberflatimage=imIO.read_image(fiberflatimagefile)
        convdict["FiberFlatImage"]=fiberflatimage

    if arclampimagefile:
        hbeat.start("Reading ArcLampImage {}".format(arclampimagefile))
        arclampimage=imIO.read_image(arclampimagefile)
        convdict["ArcLampImage"]=arclampimage

    if fiberflatfile:
        hbeat.start("Reading FiberFlat {}".format(fiberflatfile))
        fiberflat=ffIO.read_fiberflat(fiberflatfile)
        convdict["FiberFlatFile"]=fiberflat

    if skyfile:
        hbeat.start("Reading SkyModel file {}".format(skyfile))
        skymodel=skyIO.read_sky(skyfile)
        convdict["SkyFile"]=skymodel

    if dumpintermediates:
        convdict["DumpIntermediates"]=dumpintermediates
   
    hbeat.stop("Finished reading all static files")

    img=inp
    convdict["rawimage"]=img
    pipeline=[]
    for step in config["PipeLine"]:
        pa=getobject(step["PA"],log)
        if len(pipeline) == 0:
            if not pa.is_compatible(type(img)):
                log.critical("Pipeline configuration is incorrect! check configuration {} {}".format(img,pa.is_compatible(img)))
                sys.exit("Wrong pipeline configuration")
        else:
            if not pa.is_compatible(pipeline[-1][0].get_output_type()):
                log.critical("Pipeline configuration is incorrect! check configuration")
                log.critical("Can't connect input of {} to output of {}. Incompatible types".format(pa.name,pipeline[-1][0].name))
                sys.exit("Wrong pipeline configuration")
        qas=[]
        for q in step["QAs"]:
            qa=getobject(q,log)
            if not qa.is_compatible(pa.get_output_type()):
                log.warning("QA {} can not be used for output of {}. Skipping expecting {} got {} {}".format(qa.name,pa.name,qa.__inpType__,pa.get_output_type(),qa.is_compatible(pa.get_output_type())))
            else:
                qas.append(qa)
        pipeline.append([pa,qas])
    return pipeline,convdict
Exemple #3
0
def runpipeline(pl,convdict,conf,mergeQA=False):
    """
    Runs the quicklook pipeline as configured

    Args:
        pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding
            qas for that pa
        convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file
            but convdict["IMAGE"] is like desispec.image.Image object and so on.
            details in setup_pipeline method below for examples.
        conf: a configured dictionary, read from the configuration yaml file.
            e.g: conf=configdict=yaml.load(open('configfile.yaml','rb'))
        mergedQA: if True, outputs the merged QA after the execution of pipeline. Perhaps, this 
            should always be True, but leaving as option, until configuration and IO settles.
    """

    qlog=qllogger.QLLogger("QuickLook",20)
    log=qlog.getlog()
    hb=QLHB.QLHeartbeat(log,conf["Period"],conf["Timeout"])

    inp=convdict["rawimage"]
    paconf=conf["PipeLine"]
    qlog=qllogger.QLLogger("QuickLook",0)
    log=qlog.getlog()
    passqadict=None #- pass this dict to QAs downstream

    QAresults=[] #- merged QA list for the whole pipeline. This will be reorganized for databasing after the pipeline executes
    for s,step in enumerate(pl):
        log.info("Starting to run step {}".format(paconf[s]["StepName"]))
        pa=step[0]
        pargs=mapkeywords(step[0].config["kwargs"],convdict)
        try:
            hb.start("Running {}".format(step[0].name))
            oldinp=inp #-  copy for QAs that need to see earlier input
            inp=pa(inp,**pargs)
        except Exception as e:
            log.critical("Failed to run PA {} error was {}".format(step[0].name,e))
            sys.exit("Failed to run PA {}".format(step[0].name))
        qaresult={}
        for qa in step[1]:
            try:
                qargs=mapkeywords(qa.config["kwargs"],convdict)
                hb.start("Running {}".format(qa.name))
                qargs["dict_countbins"]=passqadict #- pass this to all QA downstream

                if qa.name=="RESIDUAL" or qa.name=="Sky_Residual":
                    res=qa(inp[0],inp[1],**qargs)
                    
                else:
                    if isinstance(inp,tuple):
                        res=qa(inp[0],**qargs)
                    else:
                        res=qa(inp,**qargs)

                if qa.name=="COUNTBINS" or qa.name=="CountSpectralBins":         #TODO -must run this QA for now. change this later.
                    passqadict=res
                log.debug("{} {}".format(qa.name,inp))
                qaresult[qa.name]=res

            except Exception as e:
                log.warning("Failed to run QA {} error was {}".format(qa.name,e))
        if len(qaresult):
            if conf["DumpIntermediates"]:
                f = open(paconf[s]["OutputFile"],"w")
                f.write(yaml.dump(yamlify(qaresult)))
                hb.stop("Step {} finished. Output is in {} ".format(paconf[s]["StepName"],paconf[s]["OutputFile"]))
        else:
            hb.stop("Step {} finished.".format(paconf[s]["StepName"]))
        QAresults.append([pa.name,qaresult])
    hb.stop("Pipeline processing finished. Serializing result")

    #- merge QAs for this pipeline execution
    if mergeQA is True:
        from desispec.quicklook.util import merge_QAs
        log.info("Merging all the QAs for this pipeline execution")
        merge_QAs(QAresults)

    if isinstance(inp,tuple):
       return inp[0]
    else:
       return inp
Exemple #4
0
def runpipeline(pl, convdict, conf):
    """runs the quicklook pipeline as configured

    Args:
        pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding
            qas for that pa
        convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file
            but convdict["IMAGE"] is like desispec.image.Image object and so on.
            details in setup_pipeline method below for examples.
        conf: a configured dictionary, read from the configuration yaml file.
            e.g: conf=configdict=yaml.load(open('configfile.yaml','rb'))
    """

    qlog = qllogger.QLLogger("QuickLook", 20)
    log = qlog.getlog()
    hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"])

    inp = convdict["rawimage"]
    paconf = conf["PipeLine"]
    qlog = qllogger.QLLogger("QuickLook", 0)
    log = qlog.getlog()
    passqadict = None  #- pass this dict to QAs downstream
    for s, step in enumerate(pl):
        log.info("Starting to run step %s" % (paconf[s]["StepName"]))
        pa = step[0]
        pargs = mapkeywords(step[0].config["kwargs"], convdict)
        try:
            hb.start("Running %s" % (step[0].name))
            oldinp = inp  #-  copy for QAs that need to see earlier input
            inp = pa(inp, **pargs)
        except Exception as e:
            log.critical("Failed to run PA %s error was %s" %
                         (step[0].name, e))
            sys.exit("Failed to run PA %s" % (step[0].name))
        qaresult = {}
        for qa in step[1]:
            try:
                qargs = mapkeywords(qa.config["kwargs"], convdict)
                hb.start("Running %s" % (qa.name))
                qargs[
                    "dict_countbins"] = passqadict  #- pass this to all QA downstream

                if qa.name == "RESIDUAL" or qa.name == "Sky_Residual":
                    res = qa(oldinp, inp[1], **qargs)

                else:
                    if isinstance(inp, tuple):
                        res = qa(inp[0], **qargs)
                    else:
                        res = qa(inp, **qargs)

                if qa.name == "COUNTBINS" or qa.name == "CountSpectralBins":  #TODO -must run this QA for now. change this later.
                    passqadict = res
                log.debug("%s %s" % (qa.name, inp))
                qaresult[qa.name] = res

            except Exception as e:
                log.warning("Failed to run QA %s error was %s" % (qa.name, e))
        if len(qaresult):
            #- TODO - This dump of QAs for each PA should be reorganised. Dumping everything now.
            yaml.dump(qaresult, open(paconf[s]["OutputFile"], "wb"))
            hb.stop("Step %s finished. Output is in %s " %
                    (paconf[s]["StepName"], paconf[s]["OutputFile"]))
        else:
            hb.stop("Step %s finished." % (paconf[s]["StepName"]))
    hb.stop("Pipeline processing finished. Serializing result")
    if isinstance(inp, tuple):
        return inp[0]
    else:
        return inp
Exemple #5
0
def runpipeline(pl, convdict, conf):
    """
    Runs the quicklook pipeline as configured

    Args:
        pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding
            qas for that pa
        convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file
            but convdict["IMAGE"] is like desispec.image.Image object and so on.
            details in setup_pipeline method below for examples.
        conf: a configured dictionary, read from the configuration yaml file.
            e.g: conf=configdict=yaml.load(open('configfile.yaml','rb'))
    """

    qlog = qllogger.QLLogger()
    log = qlog.getlog()
    hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"])

    inp = convdict["rawimage"]
    singqa = conf["singleqa"]
    paconf = conf["PipeLine"]
    qlog = qllogger.QLLogger()
    log = qlog.getlog()
    passqadict = None  #- pass this dict to QAs downstream
    schemaMerger = QL_QAMerger(conf['Night'], conf['Expid'], conf['Flavor'],
                               conf['Camera'], conf['Program'], convdict)
    QAresults = []
    if singqa is None:
        for s, step in enumerate(pl):
            log.info("Starting to run step {}".format(paconf[s]["StepName"]))
            pa = step[0]
            pargs = mapkeywords(step[0].config["kwargs"], convdict)
            schemaStep = schemaMerger.addPipelineStep(paconf[s]["StepName"])
            try:
                hb.start("Running {}".format(step[0].name))
                oldinp = inp  #-  copy for QAs that need to see earlier input
                inp = pa(inp, **pargs)
                if step[0].name == 'Initialize':
                    schemaStep.addMetrics(inp[1])
            except Exception as e:
                log.critical("Failed to run PA {} error was {}".format(
                    step[0].name, e),
                             exc_info=True)
                sys.exit("Failed to run PA {}".format(step[0].name))
            qaresult = {}
            for qa in step[1]:
                try:
                    qargs = mapkeywords(qa.config["kwargs"], convdict)
                    hb.start("Running {}".format(qa.name))
                    qargs[
                        "dict_countbins"] = passqadict  #- pass this to all QA downstream

                    if qa.name == "RESIDUAL" or qa.name == "Sky_Residual":
                        res = qa(inp[0], inp[1], **qargs)
                    else:
                        if isinstance(inp, tuple):
                            res = qa(inp[0], **qargs)
                        else:
                            res = qa(inp, **qargs)

                    if qa.name == "COUNTBINS" or qa.name == "CountSpectralBins":
                        passqadict = res
                    if "qafile" in qargs:
                        qawriter.write_qa_ql(qargs["qafile"], res)
                    log.debug("{} {}".format(qa.name, inp))
                    qaresult[qa.name] = res
                    schemaStep.addParams(res['PARAMS'])
                    schemaStep.addMetrics(res['METRICS'])
                except Exception as e:
                    log.warning("Failed to run QA {}. Got Exception {}".format(
                        qa.name, e),
                                exc_info=True)
            hb.stop("Step {} finished.".format(paconf[s]["StepName"]))
            QAresults.append([pa.name, qaresult])
        hb.stop("Pipeline processing finished. Serializing result")
    else:
        import numpy as np
        qa = None
        qas = [[],
               [
                   'Bias_From_Overscan', 'Get_RMS', 'Count_Pixels',
                   'Calc_XWSigma'
               ], 'Trace_Shifts', 'CountSpectralBins',
               ['Sky_Continuum', 'Sky_Peaks'], ['Calculate_SNR'],
               ['Sky_Rband', 'Integrate_Spec']]

        singleqaperpa = [
            'Bias_From_Overscan', 'Check_HDUs', 'Trace_Shifts',
            'CountSpectralBins'
        ]
        for palg in range(len(qas)):
            if singqa in qas[palg]:
                pa = pl[palg][0]
                pac = paconf[palg]
                if singqa in singleqaperpa:
                    qa = pl[palg][1][0]
                else:
                    for qalg in range(len(qas[palg])):
                        if qas[palg][qalg] == singqa:
                            qa = pl[palg][1][qalg]
        if qa is None:
            log.critical("Unknown input QA... Valid QAs are: {}".format(qas))
            sys.exit()

        log.info("Starting to run step {}".format(pac["StepName"]))
        pargs = mapkeywords(pa.config["kwargs"], convdict)
        schemaStep = schemaMerger.addPipelineStep(pac["StepName"])
        qaresult = {}
        try:
            qargs = mapkeywords(qa.config["kwargs"], convdict)
            hb.start("Running {}".format(qa.name))
            if singqa == "Sky_Residual":
                res = qa(inp[0], inp[1], **qargs)
            else:
                if isinstance(inp, tuple):
                    res = qa(inp[0], **qargs)
                else:
                    res = qa(inp, **qargs)
            if singqa == "CountSpectralBins":
                passqadict = res
            if "qafile" in qargs:
                qawriter.write_qa_ql(qargs["qafile"], res)
            log.debug("{} {}".format(qa.name, inp))
            schemaStep.addMetrics(res['METRICS'])
        except Exception as e:
            log.warning("Failed to run QA {}. Got Exception {}".format(
                qa.name, e),
                        exc_info=True)
        if len(qaresult):
            if conf["DumpIntermediates"]:
                f = open(pac["OutputFile"], "w")
                f.write(yaml.dump(yamlify(qaresult)))
                log.info("{} finished".format(qa.name))

    #- merge QAs for this pipeline execution
    #- RS: don't write merged file if running single QA
    if singqa is None:
        log.debug("Dumping mergedQAs")
        from desispec.io import findfile
        specprod_dir = os.environ[
            'QL_SPEC_REDUX'] if 'QL_SPEC_REDUX' in os.environ else ""
        destFile = findfile('ql_mergedQA_file',
                            night=conf['Night'],
                            expid=conf['Expid'],
                            camera=conf['Camera'],
                            specprod_dir=specprod_dir)

        schemaMerger.writeTojsonFile(destFile)
        log.info("Wrote merged QA file {}".format(destFile))
        if isinstance(inp, tuple):
            return inp[0]
        else:
            return inp
Exemple #6
0
def runpipeline(pl, convdict, conf, mergeQA=False):
    """
    Runs the quicklook pipeline as configured

    Args:
        pl: is a list of [pa,qas] where pa is a pipeline step and qas the corresponding
            qas for that pa
        convdict: converted dictionary e.g : conf["IMAGE"] is the real psf file
            but convdict["IMAGE"] is like desispec.image.Image object and so on.
            details in setup_pipeline method below for examples.
        conf: a configured dictionary, read from the configuration yaml file.
            e.g: conf=configdict=yaml.load(open('configfile.yaml','rb'))
        mergedQA: if True, outputs the merged QA after the execution of pipeline. Perhaps, this 
            should always be True, but leaving as option, until configuration and IO settles.
    """

    qlog = qllogger.QLLogger()
    log = qlog.getlog()
    hb = QLHB.QLHeartbeat(log, conf["Period"], conf["Timeout"])

    inp = convdict["rawimage"]
    singqa = conf["singleqa"]
    paconf = conf["PipeLine"]
    qlog = qllogger.QLLogger()
    log = qlog.getlog()
    passqadict = None  #- pass this dict to QAs downstream
    schemaMerger = QL_QAMerger(conf['Night'], conf['Expid'], conf['Flavor'],
                               conf['Camera'], conf['Program'])
    QAresults = [
    ]  #- merged QA list for the whole pipeline. This will be reorganized for databasing after the pipeline executes
    if singqa is None:
        for s, step in enumerate(pl):
            log.info("Starting to run step {}".format(paconf[s]["StepName"]))
            pa = step[0]
            pargs = mapkeywords(step[0].config["kwargs"], convdict)
            schemaStep = schemaMerger.addPipelineStep(paconf[s]["StepName"])
            try:
                hb.start("Running {}".format(step[0].name))
                oldinp = inp  #-  copy for QAs that need to see earlier input
                inp = pa(inp, **pargs)
            except Exception as e:
                log.critical("Failed to run PA {} error was {}".format(
                    step[0].name, e),
                             exc_info=True)
                sys.exit("Failed to run PA {}".format(step[0].name))
            qaresult = {}
            for qa in step[1]:
                try:
                    qargs = mapkeywords(qa.config["kwargs"], convdict)
                    hb.start("Running {}".format(qa.name))
                    qargs[
                        "dict_countbins"] = passqadict  #- pass this to all QA downstream

                    if qa.name == "RESIDUAL" or qa.name == "Sky_Residual":
                        res = qa(inp[0], inp[1], **qargs)
                    else:
                        if isinstance(inp, tuple):
                            res = qa(inp[0], **qargs)
                        else:
                            res = qa(inp, **qargs)

                    if qa.name == "COUNTBINS" or qa.name == "CountSpectralBins":  #TODO -must run this QA for now. change this later.
                        passqadict = res
                    if "qafile" in qargs:
                        qawriter.write_qa_ql(qargs["qafile"], res)
                    log.debug("{} {}".format(qa.name, inp))
                    qaresult[qa.name] = res
                    schemaStep.addParams(res['PARAMS'])
                    schemaStep.addMetrics(res['METRICS'])
                except Exception as e:
                    log.warning("Failed to run QA {}. Got Exception {}".format(
                        qa.name, e),
                                exc_info=True)
            if len(qaresult):
                if conf["DumpIntermediates"]:
                    f = open(paconf[s]["OutputFile"], "w")
                    f.write(yaml.dump(yamlify(qaresult)))
                    hb.stop("Step {} finished. Output is in {} ".format(
                        paconf[s]["StepName"], paconf[s]["OutputFile"]))
            else:
                hb.stop("Step {} finished.".format(paconf[s]["StepName"]))
            QAresults.append([pa.name, qaresult])
        hb.stop("Pipeline processing finished. Serializing result")
    else:
        import numpy as np
        qa = None
        qas = [
            'Bias_From_Overscan', ['Get_RMS', 'Calc_XWSigma', 'Count_Pixels'],
            'CountSpectralBins', ['Sky_Continuum', 'Sky_Peaks'],
            ['Sky_Residual', 'Integrate_Spec', 'Calculate_SNR']
        ]
        for palg in range(len(qas)):
            if singqa in qas[palg]:
                pa = pl[palg][0]
                pac = paconf[palg]
                if singqa == 'Bias_From_Overscan' or singqa == 'CountSpectralBins':
                    qa = pl[palg][1][0]
                else:
                    for qalg in range(len(qas[palg])):
                        if qas[palg][qalg] == singqa:
                            qa = pl[palg][1][qalg]
        if qa is None:
            log.critical("Unknown input... Valid QAs are: {}".format(qas))
            sys.exit()

        log.info("Starting to run step {}".format(pac["StepName"]))
        pargs = mapkeywords(pa.config["kwargs"], convdict)
        schemaStep = schemaMerger.addPipelineStep(pac["StepName"])
        qaresult = {}
        try:
            qargs = mapkeywords(qa.config["kwargs"], convdict)
            hb.start("Running {}".format(qa.name))
            if singqa == "Sky_Residual":
                res = qa(inp[0], inp[1], **qargs)
            else:
                if isinstance(inp, tuple):
                    res = qa(inp[0], **qargs)
                else:
                    res = qa(inp, **qargs)
            if singqa == "CountSpectralBins":
                passqadict = res
            if "qafile" in qargs:
                qawriter.write_qa_ql(qargs["qafile"], res)
            log.debug("{} {}".format(qa.name, inp))
            schemaStep.addMetrics(res['METRICS'])
        except Exception as e:
            log.warning("Failed to run QA {}. Got Exception {}".format(
                qa.name, e),
                        exc_info=True)
        if len(qaresult):
            if conf["DumpIntermediates"]:
                f = open(pac["OutputFile"], "w")
                f.write(yaml.dump(yamlify(qaresult)))
                log.info("{} finished".format(qa.name))

    #- merge QAs for this pipeline execution
    if mergeQA is True:
        # from desispec.quicklook.util import merge_QAs
        # log.info("Merging all the QAs for this pipeline execution")
        # merge_QAs(QAresults,conf)
        log.debug("Dumping mergedQAs")
        from desispec.io import findfile
        ftype = 'ql_mergedQA_file'
        specprod_dir = os.environ[
            'QL_SPEC_REDUX'] if 'QL_SPEC_REDUX' in os.environ else ""
        if conf['Flavor'] == 'arcs':
            ftype = 'ql_mergedQAarc_file'
        destFile = findfile(ftype,
                            night=conf['Night'],
                            expid=conf['Expid'],
                            camera=conf['Camera'],
                            specprod_dir=specprod_dir)
        # this will overwrite the file. above function returns same name for different QL executions
        # results will be erased.
        schemaMerger.writeToFile(destFile)
        log.info("Wrote merged QA file {}".format(destFile))
        schemaMerger.writeTojsonFile(destFile)
        log.info("Wrote merged QA file {}".format(
            destFile.split('.yaml')[0] + '.json'))
    if isinstance(inp, tuple):
        return inp[0]
    else:
        return inp