Exemple #1
0
    def draw(self):

        ax_prototype = plt.subplot(self.gs_prototype())
        plt.cla()
        plt.title('Prototype')
        current_cluster = self.current_cluster()
        current_cluster.prototype.plot(ax=ax_prototype, legend=False)

        plt.figlegend(*ax_prototype.get_legend_handles_labels(), loc='lower center')

        plt.subplot(self.gs_warping_preservation(), sharex=ax_prototype)
        plt.cla()
        wpc_vector = current_cluster.warping_conservation_vector()
        plt.plot(np.arange(0.5, len(wpc_vector), 1), wpc_vector)


        self.title.set_text('Cluster #{0}/{2} ({1} elements)'.format(self._current_cluster_id + 1,
                                                                     current_cluster.n_items,
                                                                     len(self._clusters)))

        plt.subplot(self.gs_heatmap())
        plt.cla()
        self._ax_heatmap = plt.gca()

        shared_axis = current_cluster.data.plot_heatmap(horizontal_grid=True, subplot_spec=self.gs_heatmap(),
                                                        sort_by=None, highlighted_points=current_cluster.points_of_interest,
                                                        highlight_colours=self.highlight_colours)

        # Projections
        projections = current_cluster.projected_data

        ax_projections = plt.subplot(self.gs_projected_mean())
        plt.cla()
        plt.title('Average DTW projection onto prototype')
        projections.mean().plot(ax=ax_projections, legend=False)

        plt.subplot(self.gs_projected_heatmap())
        plt.cla()
        self._ax_projected_heatmap = plt.gca()

        if self._warping_conservation_view:
            current_cluster.projected_data.plot_heatmap(horizontal_grid=True, subplot_spec=self.gs_projected_heatmap(),
                                                    share_y_axis=shared_axis, sort_by=None,
                                                    highlighted_points=current_cluster.tracked_points_of_interest,
                                                    highlight_colours=self.highlight_colours,
                                                    replace_with_dataframe=current_cluster.warping_conservation_data)
        else:
            current_cluster.projected_data.plot_heatmap(horizontal_grid=True, subplot_spec=self.gs_projected_heatmap(),
                                                                share_y_axis=shared_axis, sort_by=None,
                                                                highlighted_points=current_cluster.tracked_points_of_interest,
                                                                highlight_colours=self.highlight_colours)


        # Finally issue a draw command for the plot
        plt.draw()
Exemple #2
0
    def draw_dendrogram(self):
        ax_dendrogram = self.ax_dendrogram
        plt.subplot(ax_dendrogram, rasterized=True)
        hc = self.hierarchical_clustering_object

        dendrogram_dict = hc.dendrogram(orientation='right', get_leaves=True,  distance_sort=True,
                                        color_threshold=self._cut_xdata, ax=ax_dendrogram)
        leaves = dendrogram_dict['leaves']

        plt.setp(plt.gca().get_xticklabels(), rotation='vertical', fontsize=7)
        plt.gca().get_yaxis().set_visible(False)

        if self._sorted_index is None:
            self._sorted_index = hc.data.items[leaves]
Exemple #3
0
    def _plot_regular_heatmap_on_figure(self, cluster):
        f = plt.figure(figsize=(11.7, 8.3))
        plt.subplots_adjust(left=0.05, bottom=0.05, top=0.95, right=0.95)
        self._enlarged_heatmap_axis = plt.gca()

        cluster.data.plot_heatmap(horizontal_grid=True,
                                          sort_by=None, highlighted_points=cluster.points_of_interest, highlight_colours=self.highlight_colours)

        f.canvas.mpl_connect('button_press_event', self._onclick_listener)
        return f
Exemple #4
0
def plot_dtw_path(path, ax=None, *args, **kwargs):
    """
    Plots path onto axis supplied by ax (or `plt.gca()` if no such axis given.

    :param path:
    :param ax:
    :param args:
    :param kwargs:
    :return:
    """
    if ax is None:
        ax = plt.gca()

    plot = ax.plot(path[0], path[1], *args, **kwargs)
Exemple #5
0
def plot_dtw_path(path, ax=None, *args, **kwargs):
    """
    Plots path onto axis supplied by ax (or `plt.gca()` if no such axis given.

    :param path:
    :param ax:
    :param args:
    :param kwargs:
    :return:
    """
    if ax is None:
        ax = plt.gca()

    plot = ax.plot(path[0], path[1], *args, **kwargs)
Exemple #6
0
def plot_dtw_cost_and_path(cost_matrix, path, ax=None):
    """
        Plots the DTW cost matrix and path.
        Code taken from the mlpy documentation:
        http://mlpy.sourceforge.net/docs/3.5/dtw.html
    :param cost_matrix:
    :param path:
    :return:
    """

    if ax is None:
        ax = plt.gca()

    plot1 = ax.imshow(cost_matrix.T, origin='lower', cmap=cm.gray, aspect='auto', interpolation='nearest')
    plt.colorbar(plot1)
    plot2 = ax.plot(path[0], path[1], 'w')

    xlim = ax.set_xlim((-0.5, cost_matrix.shape[0] - 0.5))
    ylim = ax.set_ylim((-0.5, cost_matrix.shape[1] - 0.5))
Exemple #7
0
def raw_plot_data_as_heatmap(data_frame, ax=None, highlight_masks=None, highlight_colours=None, *args, **kwargs):
    if ax is None:
        ax = plt.gca()

    # Create a masked array from data_frame
    masked_arr = np.ma.array(data_frame, mask=np.isnan(data_frame))

    # Use colormap from colorbrewer, draw NaNs as white
    cmap = palettable.colorbrewer.sequential.YlGnBu_9.mpl_colormap

    cmap.set_bad('#FFFFFF', 1.0)
    HEATMAP_COLORS = ['k', 'w']
    result = ax.imshow(masked_arr, origin='lower', cmap=cmap, aspect="auto", interpolation='nearest', *args, **kwargs)
    if highlight_masks is not None:
        for j, mask in highlight_masks.iteritems():
            highlight_cmap = matplotlib.colors.ListedColormap([highlight_colours[j]])
            highlight_cmap.set_bad('#000000', 0)
            ax.imshow(highlight_masks[j], origin='lower', cmap=highlight_cmap, aspect="auto", interpolation='nearest',
                               *args, **kwargs)

    return result
Exemple #8
0
    def dendrogram(self, ax=None, no_labels=True, *args, **kwargs):
        """
        Plots the dendrogram for the hieararchical clustering
        :return:
        """
        from dgw.util.plotting import pyplot as plt

        linkage = self.linkage

        if ax is None:
            ax = plt.gca()

        color_threshold = kwargs.pop('color_threshold', self._distance_threshold)

        ans = hierarchy.dendrogram(linkage, no_labels=no_labels,
                                   above_threshold_color='k',
                                   color_threshold=color_threshold,
                                   *args, **kwargs)

        ax.set_xlabel('Distance')

        return ans
Exemple #9
0
def plot_dtw_cost_and_path(cost_matrix, path, ax=None):
    """
        Plots the DTW cost matrix and path.
        Code taken from the mlpy documentation:
        http://mlpy.sourceforge.net/docs/3.5/dtw.html
    :param cost_matrix:
    :param path:
    :return:
    """

    if ax is None:
        ax = plt.gca()

    plot1 = ax.imshow(cost_matrix.T,
                      origin='lower',
                      cmap=cm.gray,
                      aspect='auto',
                      interpolation='nearest')
    plt.colorbar(plot1)
    plot2 = ax.plot(path[0], path[1], 'w')

    xlim = ax.set_xlim((-0.5, cost_matrix.shape[0] - 0.5))
    ylim = ax.set_ylim((-0.5, cost_matrix.shape[1] - 0.5))
Exemple #10
0
def plot(alignments, titles=None, horizontal_grid=True,
         no_y_axis=False, sort_by=None, subplot_spec=None, share_y_axis=None, scale_y_axis=None, highlighted_points={},
         highlight_colours=None,
         rasterized=True, replace_with_dataframe=None):
    """

    :param alignments: `AlignmentsData` object
    :param titles: Titles of the heatmaps. If set to none `alignments.dataset_axis` will be used
    :param horizontal_grid: Whether to plot heatmap on a horizontal grid
    :param no_y_axis: Will not plot the major (items) axis.
    :param sort_by: Sort values by 'length' or supplied index.
    :param subplot_spec: SubplotSpec of the suplot to plot hte heatmaps in. See `matplotlib.gridspec` package.
    :param share_y_axis: if not None, the plot will share the major (items) axis with the specified axis
    :param scale_y_axis: plot will scale the y axis by the specified number (linearly) if set.
    :type scale_y_axis: int
    :param highlighted_points: a (index, array) dictionary of points that should be highlighted in the heatmap
    :param: rasterized: whether to rasterize the plot or not (faster rending for rasterized)
    :param replace_with_dataframe: replace the data with the dataframe provided. Use for toggleable overlays
    :return: returns the shared y axis
    """
    from dgw.util.plotting import pyplot as plt
    from matplotlib import gridspec

    number_of_datasets = alignments.number_of_datasets

    if titles is None:
        titles = alignments.dataset_axis

    # Should be OK just to just sort the first dataset as all others should have the same len
    sample_data_frame = alignments.dataset_xs(alignments.dataset_axis[0], copy=False).T
    lengths = sample_data_frame.apply(no_nans_len, axis=1)
    max_len = lengths.max()

    # Sorting
    if isinstance(sort_by, pd.Index):
        sorted_index = sort_by
    elif sort_by == 'length':
        debug('Sorting by length')
        lengths.sort()  # Should do in-place
        sorted_index = lengths.index
    elif sort_by is None:
        sorted_index = alignments.items
    else:
        raise ValueError('Unsupported sort_by value provided: {0!r}. Only None or \'length\' supported'.format(sort_by))
    # Apply sorting
    alignments = alignments.ix[sorted_index]
    # Create the instance of axis formatter
    tick_formatter = dataset_ticks(alignments, scale_y_axis)

    # Subplot creation

    if horizontal_grid:
        grid = (1, number_of_datasets + 1)
        width_ratios = [5] * number_of_datasets
        width_ratios.append(1)
        spacing_kwargs = {'wspace': 0.01, 'width_ratios': width_ratios}  # Almost no space between plots
    else:
        grid = (number_of_datasets, 2)
        spacing_kwargs = {'hspace': 0.15, 'width_ratios': [5, 1]} # Allow a bit of a space for title

    if not subplot_spec:
        gs = gridspec.GridSpec(*grid, **spacing_kwargs)
    else:
        gs = gridspec.GridSpecFromSubplotSpec(*grid, subplot_spec=subplot_spec, **spacing_kwargs)

    # Main drawing loop
    first_axis = None
    extent = None
    if scale_y_axis:
        extent = [0, max_len, 0, alignments.number_of_items * scale_y_axis] # Multiply by 10 as that is what matplotlib's dendrogram returns

    if highlighted_points:
        highlight_masks = defaultdict(lambda: np.zeros((alignments.number_of_items, max_len), dtype=np.bool))
        for i, ix in enumerate(sorted_index):
            try:
                points_of_interest = highlighted_points[ix]
            except KeyError:
                continue

            for j, points in points_of_interest.iteritems():
                highlight_masks[j][i][points] = 1

        for j in highlight_masks.iterkeys():
            highlight_masks[j] = np.ma.masked_where(highlight_masks[j] <= 0, highlight_masks[j])

    else:
        highlight_masks = None

    for i, (ix, title) in enumerate(zip(alignments.dataset_axis, titles)):
        t_gs = gs[:, i] if horizontal_grid else gs[i, 1]
        if i == 0:
            if not share_y_axis:
                first_axis = plt.subplot(t_gs)
                share_y_axis = first_axis
            else:
                first_axis = plt.subplot(t_gs, sharey=share_y_axis)
        else:
            # Remember to share axes
            plt.subplot(t_gs, sharex=first_axis, sharey=share_y_axis)

        plt.gca().get_yaxis().set_major_formatter(tick_formatter)
        #plt.gca().get_yaxis().set_major_locator(IndexLocator(1000, 0))
        # Remove redundant axes
        if horizontal_grid:
            if i > 0 or no_y_axis:
                plt.gca().get_yaxis().set_visible(False)
        else:
            # Leave only last axis
            if i + 1 < number_of_datasets:
                plt.gca().get_xaxis().set_visible(False)

            if no_y_axis:
                plt.gca().get_yaxis().set_visible(False)

        data_to_plot = alignments.dataset_xs(ix, copy=False).T
        # Cut most of the columns that are NaNs out of the plot
        data_to_plot = data_to_plot[data_to_plot.columns[:max_len]]

        if replace_with_dataframe is not None:
            result = raw_plot_data_as_heatmap(replace_with_dataframe, extent=extent,
                                              rasterized=rasterized)
        else:
            result = raw_plot_data_as_heatmap(data_to_plot, extent=extent,
                                          highlight_masks=highlight_masks, rasterized=rasterized, highlight_colours=highlight_colours)
        debug(plt.gca().get_ylim())
        debug(plt.gca().get_xlim())

        plt.title(title)
        plt.gca().title.set_fontsize(7)
        plt.gca().grid(False)
        plt.setp(plt.gca().get_xticklabels(), rotation='vertical', fontsize=7)

    # Colorbar
    colorbar_axis = plt.subplot(gs[:, number_of_datasets] if horizontal_grid else gs[:, 2])
    plt.colorbar(result, cax=colorbar_axis)

    return first_axis