def findNewPath(self, startVertices, endVertices, newRoutes, matrixPshort, gamma, lohse, dk): """ This method finds the new paths for all OD pairs. The Dijkstra algorithm is applied for searching the shortest paths. """ newRoutes = 0 for start, startVertex in enumerate(startVertices): endSet = set() for end, endVertex in enumerate(endVertices): if startVertex._id != endVertex._id and matrixPshort[start][end] > 0.: endSet.add(endVertex) if dk == 'boost': D, P = dijkstraBoost(self._boostGraph, startVertex.boost) elif dk == 'plain': D, P = dijkstraPlain(startVertex, endSet) elif dk == 'extend': D, P = dijkstra(startVertex, endSet) for end, endVertex in enumerate(endVertices): if startVertex._id != endVertex._id and matrixPshort[start][end] > 0.: helpPath = [] helpPathSet = set() pathcost = D[endVertex] / 3600. ODPaths = self._paths[startVertex][endVertex] for path in ODPaths: path.currentshortest = False vertex = endVertex while vertex != startVertex: helpPath.append(P[vertex]) helpPathSet.add(P[vertex]) vertex = P[vertex]._from helpPath.reverse() newPath, smallDiffPath = self.checkSmallDiff( ODPaths, helpPath, helpPathSet, pathcost) if newPath: newpath = Path(startVertex, endVertex, helpPath) ODPaths.append(newpath) newpath.getPathLength() for route in ODPaths: route.updateSumOverlap(newpath, gamma) if len(ODPaths) > 1: for route in ODPaths[:-1]: newpath.updateSumOverlap(route, gamma) if lohse: newpath.pathhelpacttime = pathcost else: newpath.actpathtime = pathcost for edge in newpath.edges: newpath.freepathtime += edge.freeflowtime newRoutes += 1 elif not smallDiffPath: if lohse: path.pathhelpacttime = pathcost else: path.actpathtime = pathcost path.usedcounts += 1 path.currentshortest = True return newRoutes
def main(): # for measuring the required time for reading input files inputreaderstart = datetime.datetime.now() foutlog = open('%s_log.txt' % options.type, 'w') foutlog.write( 'The stochastic user equilibrium traffic assignment will be executed with the %s model.\n' % options.type) foutlog.write( 'All vehicular releasing times are determined randomly(uniform).\n') matrices = options.mtxpsfile.split(",") parser = make_parser() if options.verbose: print("Reading net") print('net file:', options.netfile) net = Net() sumolib.net.readNet(options.netfile, net=net) parser.setContentHandler(DistrictsReader(net)) parser.parse(options.confile) if options.sigfile: parser.setContentHandler(ExtraSignalInformationReader(net)) parser.parse(options.sigfile) foutlog.write('- Reading network: done.\n') foutlog.write('number of total startVertices:%s\n' % net.getstartCounts()) foutlog.write('number of total endVertices:%s\n' % net.getendCounts()) if options.verbose: print(net.getfullEdgeCounts(), "edges read (internal edges included)") if options.curvefile: updateCurveTable(options.curvefile) if options.hours == 24.: assignHours = 16. else: assignHours = options.hours for edge in net.getEdges(): if edge._lanes: edge.getCapacity() edge.getAdjustedCapacity(net) edge.estcapacity *= assignHours edge.getConflictLink() if options.dijkstra == 'boost': net.createBoostGraph() if options.verbose: print("after link reduction:", net.getfullEdgeCounts(), "edges read") # calculate link travel time for all district connectors getConnectionTravelTime(net._startVertices, net._endVertices) foutlog.write('- Initial calculation of link parameters : done.\n') # the required time for reading the network timeForInput(inputreaderstart) if options.debug: outputNetwork(net) # initialize the map for recording the number of the assigned vehicles AssignedVeh = {} # initialize the map for recording the number of the assigned trips AssignedTrip = {} smallDemand = [] linkChoiceMap = {} odPairsMap = {} for start, startVertex in enumerate(net._startVertices): AssignedVeh[startVertex] = {} AssignedTrip[startVertex] = {} smallDemand.append([]) for end, endVertex in enumerate(net._endVertices): AssignedVeh[startVertex][endVertex] = 0 AssignedTrip[startVertex][endVertex] = 0. smallDemand[-1].append(0.) # initialization vehID = 0 matrixSum = 0.0 lohse = (options.type == "lohse") incremental = (options.type == "incremental") checkKPaths = False if not incremental and options.kPaths > 1: checkKPaths = True if not incremental: net.initialPathSet() starttime = datetime.datetime.now() # initialize the file for recording the routes if options.odestimation: net.getDetectedEdges(options.outputdir) else: foutroute = open('routes.rou.xml', 'w') print("""<?xml version="1.0"?> <!-- generated on %s by $Id: Assignment.py 25261 2017-07-19 06:52:21Z behrisch $ --> <routes>""" % starttime, file=foutroute) # for counter in range (0, len(matrices)): for counter, matrix in enumerate(matrices): # delete all vehicle information related to the last matrix for saving # the disk space vehicles = [] iterInterval = 0 matrixPshort, startVertices, endVertices, CurrentMatrixSum, begintime, assignPeriod, Pshort_EffCells, matrixSum, smallDemandRatio = getMatrix( net, options.verbose, matrix, matrixSum, options.demandscale) options.hours = float(assignPeriod) smallDemandPortion = math.ceil( float(options.maxiteration) / 2. * smallDemandRatio) if float(smallDemandPortion) != 0.: iterInterval = math.ceil( float(options.maxiteration) / float(smallDemandPortion)) departtime = begintime * 3600 if options.verbose: print('the analyzed matrices:', counter) print('Begintime:', begintime, "O'Clock") print('departtime', departtime) print('Matrix und OD Zone already read for Interval', counter) print('CurrentMatrixSum:', CurrentMatrixSum) foutlog.write('Reading matrix and O-D zones: done.\n') foutlog.write('Matrix und OD Zone already read for Interval:%s\n' % counter) foutlog.write('CurrentMatrixSum:%s\n' % CurrentMatrixSum) foutlog.write('number of current startVertices:%s\n' % len(startVertices)) foutlog.write('number of current endVertices:%s\n' % len(endVertices)) if options.odestimation: linkChoiceMap.clear() odPairsMap.clear() linkChoiceMap = initLinkChoiceMap(net, startVertices, endVertices, matrixPshort, linkChoiceMap, odPairsMap) for edge in net.getEdges(): edge.flow = 0. edge.helpflow = 0. edge.actualtime = edge.freeflowtime edge.helpacttime = edge.freeflowtime edge.fTT = 0. edge.TT = 0. edge.delta = 0. edge.helpacttimeEx = 0. # the number of origins, the umber of destinations and the number of # the OD pairs origins = len(startVertices) dests = len(endVertices) ODpairs = origins * dests # output the origin and destination zones and the number of effective # OD pairs if options.debug: # matrixCounter) outputODZone(startVertices, endVertices, Pshort_EffCells, counter) if incremental: print('begin the incremental assignment!') iter = 0 options.lamda = 0. while iter < options.maxiteration: foutlog.write('- Current iteration(not executed yet):%s\n' % iter) iter += 1 if iterInterval != 0 and operator.mod(iter, iterInterval) == 0: assignSmallDemand = True else: assignSmallDemand = False for start, startVertex in enumerate(startVertices): targets = set() for end, endVertex in enumerate(endVertices): if assignSmallDemand and matrixPshort[start][ end] > 0. and matrixPshort[start][end] < 1.: smallDemand[start][end] = matrixPshort[start][ end] / float(smallDemandPortion) if matrixPshort[start][end] > 1. or ( assignSmallDemand and smallDemand[start][end] > 0.): targets.add(endVertex) if len(targets) > 0: if options.dijkstra == 'boost': D, P = dijkstraBoost(net._boostGraph, startVertex.boost) elif options.dijkstra == 'plain': D, P = dijkstraPlain(startVertex, targets) elif options.dijkstra == 'extend': D, P = dijkstra(startVertex, targets) vehID, smallDemand, linkChoiceMap = doIncAssign( net, vehicles, options.verbose, options.maxiteration, options.odestimation, endVertices, start, startVertex, matrixPshort, smallDemand, D, P, AssignedVeh, AssignedTrip, vehID, assignSmallDemand, linkChoiceMap, odPairsMap) if options.dijkstra != 'extend': linkMap = net._fullEdges else: linkMap = net._edges for edge in linkMap.itervalues(): edge.getActualTravelTime(options, False) if options.dijkstra == 'boost': edge.boost.weight = edge.helpacttime else: print('begin the', options.type, " assignment!") # initialization for the clogit and the lohse assignment model iter_outside = 1 newRoutes = 1 stable = False first = True # begin the traffic Assignment while newRoutes > 0: foutlog.write('- SUE iteration:%s\n' % iter_outside) # Generate the effective routes als intital path solutions, # when considering k shortest paths (k is defined by the user.) if checkKPaths: checkPathStart = datetime.datetime.now() newRoutes = net.calcKPaths(options.verbose, options.kPaths, newRoutes, startVertices, endVertices, matrixPshort, options.gamma) checkPathEnd = datetime.datetime.now() - checkPathStart foutlog.write( '- Time for finding the k-shortest paths: %s\n' % checkPathEnd) foutlog.write( '- Finding the k-shortest paths for each OD pair: done.\n' ) if options.verbose: print('iter_outside:', iter_outside) print('number of k shortest paths:', options.kPaths) print('number of new routes:', newRoutes) elif not checkKPaths and iter_outside == 1 and counter == 0: print('search for the new path') newRoutes = net.findNewPath(startVertices, endVertices, newRoutes, matrixPshort, options.gamma, lohse, options.dijkstra) checkKPaths = False if options.verbose: print('iter_outside:', iter_outside) print('number of new routes:', newRoutes) stable = False iter_inside = 1 while not stable: if options.verbose: print('iter_inside:', iter_inside) stable = doSUEAssign(net, options, startVertices, endVertices, matrixPshort, iter_inside, lohse, first) # The matrixPlong and the matrixTruck should be added when # considering the long-distance trips and the truck trips. if lohse: stable = doLohseStopCheck(net, options, stable, iter_inside, options.maxiteration, foutlog) iter_inside += 1 if options.verbose: print('stable:', stable) newRoutes = net.findNewPath(startVertices, endVertices, newRoutes, matrixPshort, options.gamma, lohse, options.dijkstra) first = False iter_outside += 1 if newRoutes < 3 and iter_outside > int( (options.maxiteration) / 2): newRoutes = 0 if iter_outside > options.maxiteration: print('The max. number of iterations is reached!') foutlog.write( 'The max. number of iterations is reached!\n') foutlog.write( 'The number of new routes and the parameter stable will be set to zero and True respectively.\n' ) print('newRoutes:', newRoutes) stable = True newRoutes = 0 # update the path choice probability and the path flows as well as # generate vehicle data vehID = doSUEVehAssign(net, vehicles, options, counter, matrixPshort, startVertices, endVertices, AssignedVeh, AssignedTrip, vehID, lohse) # output the generated vehicular releasing times and routes, based on # the current matrix print('done with the assignment') # debug if options.odestimation: linkChoicesOutput(net, startVertices, endVertices, matrixPshort, linkChoiceMap, odPairsMap, options.outputdir, starttime) else: sortedVehOutput(vehicles, departtime, options, foutroute) if not options.odestimation: foutroute.write('</routes>\n') foutroute.close() # output the global performance indices assigntime = outputStatistics(net, starttime, len(matrices)) foutlog.write( '- Assignment is completed and all required information is generated. ' ) foutlog.close() if options.verbose: print('Duration for traffic assignment:', assigntime) print('Total assigned vehicles:', vehID) print('Total number of the assigned trips:', matrixSum)
def main(): # for measuring the required time for reading input files inputreaderstart = datetime.datetime.now() foutlog = file('%s_log.txt' % options.type, 'w') foutlog.write('The stochastic user equilibrium traffic assignment will be executed with the %s model.\n' % options.type) foutlog.write('All vehicular releasing times are determined randomly(uniform).\n') matrices = options.mtxpsfile.split(",") parser = make_parser() if options.verbose: print "Reading net" print 'net file:', options.netfile net = Net() sumolib.net.readNet(options.netfile, net=net) parser.setContentHandler(DistrictsReader(net)) parser.parse(options.confile) if options.sigfile: parser.setContentHandler(ExtraSignalInformationReader(net)) parser.parse(options.sigfile) foutlog.write('- Reading network: done.\n') foutlog.write('number of total startVertices:%s\n' % net.getstartCounts()) foutlog.write('number of total endVertices:%s\n' % net.getendCounts()) if options.verbose: print net.getfullEdgeCounts(), "edges read (internal edges included)" if options.curvefile: updateCurveTable(options.curvefile) if options.hours == 24.: assignHours = 16. else: assignHours = options.hours for edge in net.getEdges(): if edge._lanes: edge.getCapacity() edge.getAdjustedCapacity(net) edge.estcapacity *= assignHours edge.getConflictLink() if options.dijkstra == 'boost': net.createBoostGraph() if options.verbose: print "after link reduction:", net.getfullEdgeCounts(), "edges read" # calculate link travel time for all district connectors getConnectionTravelTime(net._startVertices, net._endVertices) foutlog.write('- Initial calculation of link parameters : done.\n') # the required time for reading the network timeForInput(inputreaderstart) if options.debug: outputNetwork(net) # initialize the map for recording the number of the assigned vehicles AssignedVeh = {} # initialize the map for recording the number of the assigned trips AssignedTrip = {} smallDemand = [] linkChoiceMap = {} odPairsMap = {} for start, startVertex in enumerate(net._startVertices): AssignedVeh[startVertex]={} AssignedTrip[startVertex]={} smallDemand.append([]) for end, endVertex in enumerate(net._endVertices): AssignedVeh[startVertex][endVertex] = 0 AssignedTrip[startVertex][endVertex] = 0. smallDemand[-1].append(0.) # initialization vehID = 0 matrixSum = 0.0 lohse = (options.type == "lohse") incremental = (options.type == "incremental") checkKPaths = False if not incremental and options.kPaths > 1: checkKPaths = True if not incremental: net.initialPathSet() starttime = datetime.datetime.now() # initialize the file for recording the routes if options.odestimation: net.getDetectedEdges(options.outputdir) else: foutroute = open('routes.rou.xml', 'w') print >> foutroute, """<?xml version="1.0"?> <!-- generated on %s by $Id: Assignment.py 11700 2012-01-10 22:20:15Z behrisch $ --> <routes>""" % starttime for counter, matrix in enumerate(matrices): #for counter in range (0, len(matrices)): # delete all vehicle information related to the last matrix for saving the disk space vehicles = [] iterInterval = 0 matrixPshort, startVertices, endVertices, CurrentMatrixSum, begintime, assignPeriod, Pshort_EffCells, matrixSum, smallDemandRatio = getMatrix(net, options.verbose, matrix, matrixSum, options.demandscale) options.hours = float(assignPeriod) smallDemandPortion = math.ceil(float(options.maxiteration)/2. * smallDemandRatio) if float(smallDemandPortion) != 0.: iterInterval = math.ceil(float(options.maxiteration) / float(smallDemandPortion)) departtime = begintime * 3600 if options.verbose: print 'the analyzed matrices:', counter print 'Begintime:', begintime, "O'Clock" print 'departtime', departtime print 'Matrix und OD Zone already read for Interval', counter print 'CurrentMatrixSum:', CurrentMatrixSum foutlog.write('Reading matrix and O-D zones: done.\n') foutlog.write('Matrix und OD Zone already read for Interval:%s\n' %counter) foutlog.write('CurrentMatrixSum:%s\n' %CurrentMatrixSum) foutlog.write('number of current startVertices:%s\n' %len(startVertices)) foutlog.write('number of current endVertices:%s\n' %len(endVertices)) if options.odestimation: linkChoiceMap.clear() odPairsMap.clear() linkChoiceMap = initLinkChoiceMap(net, startVertices, endVertices, matrixPshort, linkChoiceMap, odPairsMap) for edge in net.getEdges(): edge.flow = 0. edge.helpflow = 0. edge.actualtime = edge.freeflowtime edge.helpacttime = edge.freeflowtime edge.fTT = 0. edge.TT = 0. edge.delta = 0. edge.helpacttimeEx = 0. # the number of origins, the umber of destinations and the number of the OD pairs origins = len(startVertices) dests = len(endVertices) ODpairs = origins * dests # output the origin and destination zones and the number of effective OD pairs if options.debug: outputODZone(startVertices, endVertices, Pshort_EffCells, counter) # matrixCounter) if incremental: print 'begin the incremental assignment!' iter = 0 options.lamda = 0. while iter < options.maxiteration: foutlog.write('- Current iteration(not executed yet):%s\n' %iter) iter += 1 if iterInterval != 0 and operator.mod(iter,iterInterval) == 0: assignSmallDemand = True else: assignSmallDemand = False for start, startVertex in enumerate(startVertices): targets = set() for end, endVertex in enumerate(endVertices): if assignSmallDemand and matrixPshort[start][end] > 0. and matrixPshort[start][end] < 1.: smallDemand[start][end] = matrixPshort[start][end]/float(smallDemandPortion) if matrixPshort[start][end] > 1. or (assignSmallDemand and smallDemand[start][end] > 0.): targets.add(endVertex) if len(targets) > 0: if options.dijkstra == 'boost': D,P = dijkstraBoost(net._boostGraph, startVertex.boost) elif options.dijkstra == 'plain': D,P = dijkstraPlain(startVertex, targets) elif options.dijkstra == 'extend': D,P = dijkstra(startVertex, targets) vehID, smallDemand, linkChoiceMap = doIncAssign(net, vehicles, options.verbose, options.maxiteration, options.odestimation, endVertices, start, startVertex, matrixPshort, smallDemand, D, P, AssignedVeh, AssignedTrip, vehID, assignSmallDemand, linkChoiceMap, odPairsMap) if options.dijkstra != 'extend': linkMap = net._fullEdges else: linkMap = net._edges for edge in linkMap.itervalues(): edge.getActualTravelTime(options, False) if options.dijkstra == 'boost': edge.boost.weight = edge.helpacttime else: print 'begin the', options.type, " assignment!" # initialization for the clogit and the lohse assignment model iter_outside = 1 newRoutes = 1 stable = False first = True # begin the traffic Assignment while newRoutes > 0: foutlog.write('- SUE iteration:%s\n' %iter_outside) # Generate the effective routes als intital path solutions, when considering k shortest paths (k is defined by the user.) if checkKPaths: checkPathStart = datetime.datetime.now() newRoutes = net.calcKPaths(options.verbose, options.kPaths, newRoutes, startVertices, endVertices, matrixPshort, options.gamma) checkPathEnd = datetime.datetime.now() - checkPathStart foutlog.write('- Time for finding the k-shortest paths: %s\n' %checkPathEnd) foutlog.write('- Finding the k-shortest paths for each OD pair: done.\n') if options.verbose: print 'iter_outside:', iter_outside print 'number of k shortest paths:', options.kPaths print 'number of new routes:', newRoutes elif not checkKPaths and iter_outside == 1 and counter == 0: print 'search for the new path' newRoutes = net.findNewPath(startVertices, endVertices, newRoutes, matrixPshort, options.gamma, lohse, options.dijkstra) checkKPaths = False if options.verbose: print 'iter_outside:', iter_outside print 'number of new routes:', newRoutes stable = False iter_inside = 1 while not stable: if options.verbose: print 'iter_inside:', iter_inside stable = doSUEAssign(net, options, startVertices, endVertices, matrixPshort, iter_inside, lohse, first) # The matrixPlong and the matrixTruck should be added when considering the long-distance trips and the truck trips. if lohse: stable = doLohseStopCheck(net, options, stable, iter_inside, options.maxiteration, foutlog) iter_inside += 1 if options.verbose: print 'stable:', stable newRoutes = net.findNewPath(startVertices, endVertices, newRoutes, matrixPshort, options.gamma, lohse, options.dijkstra) first = False iter_outside += 1 if newRoutes < 3 and iter_outside > int((options.maxiteration)/2): newRoutes = 0 if iter_outside > options.maxiteration: print 'The max. number of iterations is reached!' foutlog.write('The max. number of iterations is reached!\n') foutlog.write('The number of new routes and the parameter stable will be set to zero and True respectively.\n') print 'newRoutes:', newRoutes stable = True newRoutes = 0 # update the path choice probability and the path flows as well as generate vehicle data vehID = doSUEVehAssign(net, vehicles, options, counter, matrixPshort, startVertices, endVertices, AssignedVeh, AssignedTrip, vehID, lohse) # output the generated vehicular releasing times and routes, based on the current matrix print 'done with the assignment' # debug if options.odestimation: linkChoicesOutput(net, startVertices, endVertices, matrixPshort, linkChoiceMap, odPairsMap, options.outputdir, starttime) else: sortedVehOutput(vehicles, departtime, options, foutroute) if not options.odestimation: foutroute.write('</routes>\n') foutroute.close() # output the global performance indices assigntime = outputStatistics(net, starttime, len(matrices)) foutlog.write('- Assignment is completed and all required information is generated. ') foutlog.close() if options.verbose: print 'Duration for traffic assignment:', assigntime print 'Total assigned vehicles:', vehID print 'Total number of the assigned trips:', matrixSum