def _eval_expand_basic(self, **hints): summand = self.function.expand(**hints) if summand.is_Add and summand.is_commutative: return Add(*[self.func(i, *self.limits) for i in summand.args]) elif summand != self.function: return self.func(summand, *self.limits) return self
def _eval_nseries(self, x, n, logx): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break terms, order = expr.function.nseries(x=symb, n=n, logx=logx).as_coeff_add(Order) return integrate(terms, *expr.limits) + Add(*order) * x
def _eval_nseries(self, x, n, logx): if len(self.args) == 1: from diofant import O, Add, Integer, factorial x = self.args[0] o = O(x**n, x) l = S.Zero if n > 0: l += Add(*[Integer(-k)**(k - 1)*x**k/factorial(k) for k in range(1, n)]) return l + o return super(LambertW, self)._eval_nseries(x, n=n, logx=logx)
def _eval_expand_log(self, deep=True, **hints): from diofant import unpolarify, expand_log from diofant.concrete import Sum, Product force = hints.get('force', False) if (len(self.args) == 2): return expand_log(self.func(*self.args), deep=deep, force=force) arg = self.args[0] if arg.is_Integer: # remove perfect powers p = perfect_power(int(arg)) if p is not False: return p[1]*self.func(p[0]) elif arg.is_Mul: expr = [] nonpos = [] for x in arg.args: if force or x.is_positive or x.is_polar: a = self.func(x) if isinstance(a, log): expr.append(self.func(x)._eval_expand_log(**hints)) else: expr.append(a) elif x.is_negative: a = self.func(-x) expr.append(a) nonpos.append(S.NegativeOne) else: nonpos.append(x) return Add(*expr) + log(Mul(*nonpos)) elif arg.is_Pow: if force or (arg.exp.is_extended_real and arg.base.is_positive) or \ arg.base.is_polar: b = arg.base e = arg.exp a = self.func(b) if isinstance(a, log): return unpolarify(e) * a._eval_expand_log(**hints) else: return unpolarify(e) * a elif isinstance(arg, Product): if arg.function.is_positive: return Sum(log(arg.function), *arg.limits) return self.func(arg)
def evalf_log(expr, prec, options): from diofant import Abs, Add, log if len(expr.args) > 1: expr = expr.doit() return evalf(expr, prec, options) arg = expr.args[0] workprec = prec + 10 xre, xim, xacc, _ = evalf(arg, workprec, options) if xim: # XXX: use get_abs etc instead re = evalf_log(log(Abs(arg, evaluate=False), evaluate=False), prec, options) im = mpf_atan2(xim, xre or fzero, prec) return re[0], im, re[2], prec imaginary_term = (mpf_cmp(xre, fzero) < 0) re = mpf_log(mpf_abs(xre), prec, rnd) size = fastlog(re) if prec - size > workprec: # We actually need to compute 1+x accurately, not x arg = Add(S.NegativeOne, arg, evaluate=False) xre, xim, _, _ = evalf_add(arg, prec, options) prec2 = workprec - fastlog(xre) # xre is now x - 1 so we add 1 back here to calculate x re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd) re_acc = prec if imaginary_term: return re, mpf_pi(prec), re_acc, prec else: return re, None, re_acc, None
def eval(cls, p, q): from diofant.core.add import Add from diofant.core.mul import Mul from diofant.core.singleton import S from diofant.core.exprtools import gcd_terms from diofant.polys.polytools import gcd def doit(p, q): """Try to return p % q if both are numbers or +/-p is known to be less than or equal q. """ if p.is_infinite or q.is_infinite: return nan if (p == q or p == -q or p.is_Pow and p.exp.is_Integer and p.base == q or p.is_integer and q == 1): return S.Zero if q.is_Number: if p.is_Number: return (p % q) if q == 2: if p.is_even: return S.Zero elif p.is_odd: return S.One # by ratio r = p / q try: d = int(r) except TypeError: pass else: rv = p - d * q if (rv * q).is_nonnegative: return rv elif (rv * q).is_nonpositive: return rv + q # by difference d = p - q if d.is_negative: if q.is_negative: return d elif q.is_positive: return p rv = doit(p, q) if rv is not None: return rv # denest if p.func is cls: # easy qinner = p.args[1] if qinner == q: return p # XXX other possibilities? # extract gcd; any further simplification should be done by the user G = gcd(p, q) if G != 1: p, q = [ gcd_terms(i / G, clear=False, fraction=False) for i in (p, q) ] pwas, qwas = p, q # simplify terms # (x + y + 2) % x -> Mod(y + 2, x) if p.is_Add: args = [] for i in p.args: a = cls(i, q) if a.count(cls) > i.count(cls): args.append(i) else: args.append(a) if args != list(p.args): p = Add(*args) else: # handle coefficients if they are not Rational # since those are not handled by factor_terms # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y) cp, p = p.as_coeff_Mul() cq, q = q.as_coeff_Mul() ok = False if not cp.is_Rational or not cq.is_Rational: r = cp % cq if r == 0: G *= cq p *= int(cp / cq) ok = True if not ok: p = cp * p q = cq * q # simple -1 extraction if p.could_extract_minus_sign() and q.could_extract_minus_sign(): G, p, q = [-i for i in (G, p, q)] # check again to see if p and q can now be handled as numbers rv = doit(p, q) if rv is not None: return rv * G # put 1.0 from G on inside if G.is_Float and G == 1: p *= G return cls(p, q, evaluate=False) elif G.is_Mul and G.args[0].is_Float and G.args[0] == 1: p = G.args[0] * p G = Mul._from_args(G.args[1:]) return G * cls(p, q, evaluate=(p, q) != (pwas, qwas))
def test_core_add(): for c in (Add, Add(x, 4)): check(c)
def _eval_integral(self, f, x, meijerg=None, risch=None, conds='piecewise'): """ Calculate the anti-derivative to the function f(x). The following algorithms are applied (roughly in this order): 1. Simple heuristics (based on pattern matching and integral table): - most frequently used functions (e.g. polynomials, products of trig functions) 2. Integration of rational functions: - A complete algorithm for integrating rational functions is implemented (the Lazard-Rioboo-Trager algorithm). The algorithm also uses the partial fraction decomposition algorithm implemented in apart() as a preprocessor to make this process faster. Note that the integral of a rational function is always elementary, but in general, it may include a RootSum. 3. Full Risch algorithm: - The Risch algorithm is a complete decision procedure for integrating elementary functions, which means that given any elementary function, it will either compute an elementary antiderivative, or else prove that none exists. Currently, part of transcendental case is implemented, meaning elementary integrals containing exponentials, logarithms, and (soon!) trigonometric functions can be computed. The algebraic case, e.g., functions containing roots, is much more difficult and is not implemented yet. - If the routine fails (because the integrand is not elementary, or because a case is not implemented yet), it continues on to the next algorithms below. If the routine proves that the integrals is nonelementary, it still moves on to the algorithms below, because we might be able to find a closed-form solution in terms of special functions. If risch=True, however, it will stop here. 4. The Meijer G-Function algorithm: - This algorithm works by first rewriting the integrand in terms of very general Meijer G-Function (meijerg in Diofant), integrating it, and then rewriting the result back, if possible. This algorithm is particularly powerful for definite integrals (which is actually part of a different method of Integral), since it can compute closed-form solutions of definite integrals even when no closed-form indefinite integral exists. But it also is capable of computing many indefinite integrals as well. - Another advantage of this method is that it can use some results about the Meijer G-Function to give a result in terms of a Piecewise expression, which allows to express conditionally convergent integrals. - Setting meijerg=True will cause integrate() to use only this method. 5. The Heuristic Risch algorithm: - This is a heuristic version of the Risch algorithm, meaning that it is not deterministic. This is tried as a last resort because it can be very slow. It is still used because not enough of the full Risch algorithm is implemented, so that there are still some integrals that can only be computed using this method. The goal is to implement enough of the Risch and Meijer G-function methods so that this can be deleted. """ from diofant.integrals.deltafunctions import deltaintegrate from diofant.integrals.heurisch import heurisch, heurisch_wrapper from diofant.integrals.rationaltools import ratint from diofant.integrals.risch import risch_integrate if risch: try: return risch_integrate(f, x, conds=conds) except NotImplementedError: return # if it is a poly(x) then let the polynomial integrate itself (fast) # # It is important to make this check first, otherwise the other code # will return a diofant expression instead of a Polynomial. # # see Polynomial for details. if isinstance(f, Poly) and not meijerg: return f.integrate(x) # Piecewise antiderivatives need to call special integrate. if f.func is Piecewise: return f._eval_integral(x) # let's cut it short if `f` does not depend on `x` if not f.has(x): return f * x # try to convert to poly(x) and then integrate if successful (fast) poly = f.as_poly(x) if poly is not None and not meijerg: return poly.integrate().as_expr() if risch is not False: try: result, i = risch_integrate(f, x, separate_integral=True, conds=conds) except NotImplementedError: pass else: if i: # There was a nonelementary integral. Try integrating it. return result + i.doit(risch=False) else: return result # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ... # we are going to handle Add terms separately, # if `f` is not Add -- we only have one term # Note that in general, this is a bad idea, because Integral(g1) + # Integral(g2) might not be computable, even if Integral(g1 + g2) is. # For example, Integral(x**x + x**x*log(x)). But many heuristics only # work term-wise. So we compute this step last, after trying # risch_integrate. We also try risch_integrate again in this loop, # because maybe the integral is a sum of an elementary part and a # nonelementary part (like erf(x) + exp(x)). risch_integrate() is # quite fast, so this is acceptable. parts = [] args = Add.make_args(f) for g in args: coeff, g = g.as_independent(x) # g(x) = const if g is S.One and not meijerg: parts.append(coeff * x) continue # g(x) = expr + O(x**n) order_term = g.getO() if order_term is not None: h = self._eval_integral(g.removeO(), x) if h is not None: parts.append(coeff * (h + self.func(order_term, *self.limits))) continue # NOTE: if there is O(x**n) and we fail to integrate then there is # no point in trying other methods because they will fail anyway. return # c # g(x) = (a*x+b) if g.is_Pow and not g.exp.has(x) and not meijerg: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) M = g.base.match(a * x + b) if M is not None: if g.exp == -1: h = log(g.base) elif conds != 'piecewise': h = g.base**(g.exp + 1) / (g.exp + 1) else: h1 = log(g.base) h2 = g.base**(g.exp + 1) / (g.exp + 1) h = Piecewise((h1, Eq(g.exp, -1)), (h2, True)) parts.append(coeff * h / M[a]) continue # poly(x) # g(x) = ------- # poly(x) if g.is_rational_function(x) and not meijerg: parts.append(coeff * ratint(g, x)) continue if not meijerg: # g(x) = Mul(trig) h = trigintegrate(g, x, conds=conds) if h is not None: parts.append(coeff * h) continue # g(x) has at least a DiracDelta term h = deltaintegrate(g, x) if h is not None: parts.append(coeff * h) continue # Try risch again. if risch is not False: try: h, i = risch_integrate(g, x, separate_integral=True, conds=conds) except NotImplementedError: h = None else: if i: h = h + i.doit(risch=False) parts.append(coeff * h) continue # fall back to heurisch try: if conds == 'piecewise': h = heurisch_wrapper(g, x, hints=[]) else: h = heurisch(g, x, hints=[]) except PolynomialError: # XXX: this exception means there is a bug in the # implementation of heuristic Risch integration # algorithm. h = None else: h = None if meijerg is not False and h is None: # rewrite using G functions try: h = meijerint_indefinite(g, x) except NotImplementedError: from diofant.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') res = None if h is not None: parts.append(coeff * h) continue # if we failed maybe it was because we had # a product that could have been expanded, # so let's try an expansion of the whole # thing before giving up; we don't try this # at the outset because there are things # that cannot be solved unless they are # NOT expanded e.g., x**x*(1+log(x)). There # should probably be a checker somewhere in this # routine to look for such cases and try to do # collection on the expressions if they are already # in an expanded form if not h and len(args) == 1: f = f.expand(mul=True, deep=False) if f.is_Add: # Note: risch will be identical on the expanded # expression, but maybe it will be able to pick out parts, # like x*(exp(x) + erf(x)). return self._eval_integral(f, x, meijerg=meijerg, risch=risch, conds=conds) if h is not None: parts.append(coeff * h) else: return return Add(*parts)
def rsolve_poly(coeffs, f, n, **hints): """ Given linear recurrence operator `\operatorname{L}` of order `k` with polynomial coefficients and inhomogeneous equation `\operatorname{L} y = f`, where `f` is a polynomial, we seek for all polynomial solutions over field `K` of characteristic zero. The algorithm performs two basic steps: (1) Compute degree `N` of the general polynomial solution. (2) Find all polynomials of degree `N` or less of `\operatorname{L} y = f`. There are two methods for computing the polynomial solutions. If the degree bound is relatively small, i.e. it's smaller than or equal to the order of the recurrence, then naive method of undetermined coefficients is being used. This gives system of algebraic equations with `N+1` unknowns. In the other case, the algorithm performs transformation of the initial equation to an equivalent one, for which the system of algebraic equations has only `r` indeterminates. This method is quite sophisticated (in comparison with the naive one) and was invented together by Abramov, Bronstein and Petkovšek. It is possible to generalize the algorithm implemented here to the case of linear q-difference and differential equations. Lets say that we would like to compute `m`-th Bernoulli polynomial up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}` recurrence, which has solution `b(n) = B_m + C`. For example: >>> from diofant import Symbol, rsolve_poly >>> n = Symbol('n', integer=True) >>> rsolve_poly([-1, 1], 4*n**3, n) C0 + n**4 - 2*n**3 + n**2 References ========== .. [1] S. A. Abramov, M. Bronstein and M. Petkovšek, On polynomial solutions of linear operator equations, in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York, 1995, 290-296. .. [2] M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Computation, 14 (1992), 243-264. .. [3] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996. """ f = sympify(f) if not f.is_polynomial(n): return homogeneous = f.is_zero r = len(coeffs) - 1 coeffs = [Poly(coeff, n) for coeff in coeffs] g = gcd_list(coeffs + [f], n, polys=True) if not g.is_ground: coeffs = [quo(c, g, n, polys=False) for c in coeffs] f = quo(f, g, n, polys=False) polys = [Poly(0, n)] * (r + 1) terms = [(S.Zero, S.NegativeInfinity)] * (r + 1) for i in range(0, r + 1): for j in range(i, r + 1): polys[i] += coeffs[j] * binomial(j, i) if not polys[i].is_zero: (exp, ), coeff = polys[i].LT() terms[i] = (coeff, exp) d = b = terms[0][1] for i in range(1, r + 1): if terms[i][1] > d: d = terms[i][1] if terms[i][1] - i > b: b = terms[i][1] - i d, b = int(d), int(b) x = Dummy('x') degree_poly = S.Zero for i in range(0, r + 1): if terms[i][1] - i == b: degree_poly += terms[i][0] * FallingFactorial(x, i) nni_roots = list( roots(degree_poly, x, filter='Z', predicate=lambda r: r >= 0).keys()) if nni_roots: N = [max(nni_roots)] else: N = [] if homogeneous: N += [-b - 1] else: N += [f.as_poly(n).degree() - b, -b - 1] N = int(max(N)) if N < 0: if homogeneous: if hints.get('symbols', False): return S.Zero, [] else: return S.Zero else: return if N <= r: C = [] y = E = S.Zero for i in range(0, N + 1): C.append(Symbol('C' + str(i))) y += C[i] * n**i for i in range(0, r + 1): E += coeffs[i].as_expr() * y.subs(n, n + i) solutions = solve_undetermined_coeffs(E - f, C, n) if solutions is not None: C = [c for c in C if (c not in solutions)] result = y.subs(solutions) else: return # TBD else: A = r U = N + A + b + 1 nni_roots = list( roots(polys[r], filter='Z', predicate=lambda r: r >= 0).keys()) if nni_roots != []: a = max(nni_roots) + 1 else: a = S.Zero def _zero_vector(k): return [S.Zero] * k def _one_vector(k): return [S.One] * k def _delta(p, k): B = S.One D = p.subs(n, a + k) for i in range(1, k + 1): B *= -Rational(k - i + 1, i) D += B * p.subs(n, a + k - i) return D alpha = {} for i in range(-A, d + 1): I = _one_vector(d + 1) for k in range(1, d + 1): I[k] = I[k - 1] * (x + i - k + 1) / k alpha[i] = S.Zero for j in range(0, A + 1): for k in range(0, d + 1): B = binomial(k, i + j) D = _delta(polys[j].as_expr(), k) alpha[i] += I[k] * B * D V = Matrix(U, A, lambda i, j: int(i == j)) if homogeneous: for i in range(A, U): v = _zero_vector(A) for k in range(1, A + b + 1): if i - k < 0: break B = alpha[k - A].subs(x, i - k) for j in range(0, A): v[j] += B * V[i - k, j] denom = alpha[-A].subs(x, i) for j in range(0, A): V[i, j] = -v[j] / denom else: G = _zero_vector(U) for i in range(A, U): v = _zero_vector(A) g = S.Zero for k in range(1, A + b + 1): if i - k < 0: break B = alpha[k - A].subs(x, i - k) for j in range(0, A): v[j] += B * V[i - k, j] g += B * G[i - k] denom = alpha[-A].subs(x, i) for j in range(0, A): V[i, j] = -v[j] / denom G[i] = (_delta(f, i - A) - g) / denom P, Q = _one_vector(U), _zero_vector(A) for i in range(1, U): P[i] = (P[i - 1] * (n - a - i + 1) / i).expand() for i in range(0, A): Q[i] = Add(*[(v * p).expand() for v, p in zip(V[:, i], P)]) if not homogeneous: h = Add(*[(g * p).expand() for g, p in zip(G, P)]) C = [Symbol('C' + str(i)) for i in range(0, A)] def g(i): return Add(*[c * _delta(q, i) for c, q in zip(C, Q)]) if homogeneous: E = [g(i) for i in range(N + 1, U)] else: E = [g(i) + _delta(h, i) for i in range(N + 1, U)] if E != []: solutions = solve(E, *C) if not solutions: if homogeneous: if hints.get('symbols', False): return S.Zero, [] else: return S.Zero else: return else: solutions = {} if homogeneous: result = S.Zero else: result = h for c, q in list(zip(C, Q)): if c in solutions: s = solutions[c] * q C.remove(c) else: s = c * q result += s.expand() if hints.get('symbols', False): return result, C else: return result
def rsolve_hyper(coeffs, f, n, **hints): """ Given linear recurrence operator `\operatorname{L}` of order `k` with polynomial coefficients and inhomogeneous equation `\operatorname{L} y = f` we seek for all hypergeometric solutions over field `K` of characteristic zero. The inhomogeneous part can be either hypergeometric or a sum of a fixed number of pairwise dissimilar hypergeometric terms. The algorithm performs three basic steps: (1) Group together similar hypergeometric terms in the inhomogeneous part of `\operatorname{L} y = f`, and find particular solution using Abramov's algorithm. (2) Compute generating set of `\operatorname{L}` and find basis in it, so that all solutions are linearly independent. (3) Form final solution with the number of arbitrary constants equal to dimension of basis of `\operatorname{L}`. Term `a(n)` is hypergeometric if it is annihilated by first order linear difference equations with polynomial coefficients or, in simpler words, if consecutive term ratio is a rational function. The output of this procedure is a linear combination of fixed number of hypergeometric terms. However the underlying method can generate larger class of solutions - D'Alembertian terms. Note also that this method not only computes the kernel of the inhomogeneous equation, but also reduces in to a basis so that solutions generated by this procedure are linearly independent Examples ======== >>> from diofant.solvers import rsolve_hyper >>> from diofant.abc import x >>> rsolve_hyper([-1, -1, 1], 0, x) C0*(1/2 + sqrt(5)/2)**x + C1*(-sqrt(5)/2 + 1/2)**x >>> rsolve_hyper([-1, 1], 1 + x, x) C0 + x*(x + 1)/2 References ========== .. [1] M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Computation, 14 (1992), 243-264. .. [2] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996. """ coeffs = list(map(sympify, coeffs)) f = sympify(f) r, kernel, symbols = len(coeffs) - 1, [], set() if not f.is_zero: if f.is_Add: similar = {} for g in f.expand().args: if not g.is_hypergeometric(n): return for h in similar.keys(): if hypersimilar(g, h, n): similar[h] += g break else: similar[g] = S.Zero inhomogeneous = [] for g, h in similar.items(): inhomogeneous.append(g + h) elif f.is_hypergeometric(n): inhomogeneous = [f] else: return for i, g in enumerate(inhomogeneous): coeff, polys = S.One, coeffs[:] denoms = [S.One] * (r + 1) s = hypersimp(g, n) for j in range(1, r + 1): coeff *= s.subs(n, n + j - 1) p, q = coeff.as_numer_denom() polys[j] *= p denoms[j] = q for j in range(0, r + 1): polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:])) R = rsolve_ratio(polys, Mul(*denoms), n, symbols=True) if R is not None: R, syms = R if syms: R = R.subs(zip(syms, [0] * len(syms))) if R: inhomogeneous[i] *= R else: return result = Add(*inhomogeneous) result = simplify(result) else: result = S.Zero Z = Dummy('Z') p, q = coeffs[0], coeffs[r].subs(n, n - r + 1) p_factors = [z for z in roots(p, n).keys()] q_factors = [z for z in roots(q, n).keys()] factors = [(S.One, S.One)] for p in p_factors: for q in q_factors: if p.is_integer and q.is_integer and p <= q: continue else: factors += [(n - p, n - q)] p = [(n - p, S.One) for p in p_factors] q = [(S.One, n - q) for q in q_factors] factors = p + factors + q for A, B in factors: polys, degrees = [], [] D = A * B.subs(n, n + r - 1) for i in range(0, r + 1): a = Mul(*[A.subs(n, n + j) for j in range(0, i)]) b = Mul(*[B.subs(n, n + j) for j in range(i, r)]) poly = quo(coeffs[i] * a * b, D, n) polys.append(poly.as_poly(n)) if not poly.is_zero: degrees.append(polys[i].degree()) d, poly = max(degrees), S.Zero for i in range(0, r + 1): coeff = polys[i].nth(d) if coeff is not S.Zero: poly += coeff * Z**i for z in roots(poly, Z).keys(): if z.is_zero: continue (C, s) = rsolve_poly([polys[i] * z**i for i in range(r + 1)], 0, n, symbols=True) if C is not None and C is not S.Zero: symbols |= set(s) ratio = z * A * C.subs(n, n + 1) / B / C ratio = simplify(ratio) skip = max([-1] + [ v for v in roots(Mul(*ratio.as_numer_denom()), n).keys() if v.is_Integer ]) + 1 K = product(ratio, (n, skip, n - 1)) if K.has(factorial, FallingFactorial, RisingFactorial): K = simplify(K) if casoratian(kernel + [K], n, zero=False) != 0: kernel.append(K) kernel.sort(key=default_sort_key) sk = list(zip(numbered_symbols('C'), kernel)) for C, ker in sk: result += C * ker if hints.get('symbols', False): symbols |= {s for s, k in sk} return result, list(symbols) else: return result
def g(i): return Add(*[c * _delta(q, i) for c, q in zip(C, Q)])
def _integrate(field=None): irreducibles = set() for poly in reducibles: for z in poly.free_symbols: if z in V: break # should this be: `irreducibles |= \ else: # set(root_factors(poly, z, filter=field))` continue # and the line below deleted? # | # V irreducibles |= set(root_factors(poly, z, filter=field)) log_coeffs, log_part = [], [] B = _symbols('B', len(irreducibles)) # Note: the ordering matters here for poly, b in reversed(list(ordered(zip(irreducibles, B)))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancelation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part / poly_denom + Add(*log_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set() def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) numer = ring.from_expr(raw_numer) solution = solve_lin_sys(numer.coeffs(), coeff_ring) if solution is None: return else: solution = [(coeff_ring.symbols[coeff_ring.index(k)], v.as_expr()) for k, v in solution.items()] return candidate.subs(solution).subs( list(zip(poly_coeffs, [S.Zero] * len(poly_coeffs))))
def _derivation(h): return Add(*[d * h.diff(v) for d, v in zip(numers, V)])
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None): """ Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator" [1]_. The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Parameters ========== heurisch(f, x, rewrite=False, hints=None) f : Expr expression x : Symbol variable rewrite : Boolean, optional force rewrite 'f' in terms of 'tan' and 'tanh', default False. hints : None or list a list of functions that may appear in anti-derivate. If None (default) - no suggestions at all, if empty list - try to figure out. Examples ======== >>> from diofant import tan >>> from diofant.integrals.heurisch import heurisch >>> from diofant.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 References ========== .. [1] Manuel Bronstein's "Poor Man's Integrator", http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html .. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. .. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. .. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. .. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== diofant.integrals.integrals.Integral.doit diofant.integrals.integrals.Integral diofant.integrals.heurisch.components """ f = sympify(f) if x not in f.free_symbols: return f * x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): # using copy of terms if g.is_Function: if g.func is li: M = g.args[0].match(a * x**b) if M is not None: terms.add( x * (li(M[a] * x**M[b]) - (M[a] * x**M[b])**(-1 / M[b]) * Ei( (M[b] + 1) * log(M[a] * x**M[b]) / M[b]))) # terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) # terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) # terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif g.is_Pow: if g.base is S.Exp1: M = g.exp.match(a * x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a]) * x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a]) * x)) M = g.exp.match(a * x**2 + b * x + c) if M is not None: if M[a].is_positive: terms.add( sqrt(pi / 4 * (-M[a])) * exp(M[c] - M[b]**2 / (4 * M[a])) * erfi( sqrt(M[a]) * x + M[b] / (2 * sqrt(M[a])))) elif M[a].is_negative: terms.add( sqrt(pi / 4 * (-M[a])) * exp(M[c] - M[b]**2 / (4 * M[a])) * erf( sqrt(-M[a]) * x - M[b] / (2 * sqrt(-M[a])))) M = g.exp.match(a * log(x)**2) if M is not None: if M[a].is_positive: terms.add( erfi( sqrt(M[a]) * log(x) + 1 / (2 * sqrt(M[a])))) if M[a].is_negative: terms.add( erf( sqrt(-M[a]) * log(x) - 1 / (2 * sqrt(-M[a])))) elif g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a * x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a] / M[b]) * x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a] / M[b]) * x)) M = g.base.match(a * x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a] / M[b]) * x)) elif M[a].is_negative: terms.add((-M[b] / 2 * sqrt(-M[a]) * atan( sqrt(-M[a]) * x / sqrt(M[a] * x**2 - M[b])) )) else: terms |= set(hints) for g in set(terms): # using copy of terms terms |= components(cancel(g.diff(x)), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) # sort mapping expressions from largest to smallest (last is always x). mapping = list( reversed( list( zip(*ordered( # [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) # rev_mapping = {v: k for k, v in mapping} # if mappings is None: # # optimizing the number of permutations of mapping # assert mapping[-1][0] == x # if not, find it and correct this comment unnecessary_permutations = [mapping.pop(-1)] mappings = permutations(mapping) else: unnecessary_permutations = unnecessary_permutations or [] def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [_substitute(cancel(g.diff(x))) for g in terms] denoms = [g.as_numer_denom()[1] for g in diffs] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch( f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep * result return numers = [cancel(denom * g) for g in diffs] def _derivation(h): return Add(*[d * h.diff(v) for d, v in zip(numers, V)]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c) * gcd(q, q.diff(y)).as_expr() else: return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return c_split[0], q * c_split[1] q_split = _splitter(cancel(q / s)) return c_split[0] * q_split[0] * s, c_split[1] * q_split[1] else: return S.One, p special = {} for term in terms: if term.is_Function: if term.func is tan: special[1 + _substitute(term)**2] = False elif term.func is tanh: special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif term.func is LambertW: special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = set(list(v_split) + [u_split[0]] + list(special.keys())) s = u_split[0] * Mul(*[k for k, v in special.items() if v]) polified = [p.as_poly(*V) for p in [s, P, Q]] if None in polified: return # --- definitions for _integrate --- a, b, c = [p.total_degree() for p in polified] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([_exponent(h) for h in g.args]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = itermonomials(V, A + B - 1 + degree_offset) else: monoms = itermonomials(V, A + B + degree_offset) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i] * monomial for i, monomial in enumerate(ordered(monoms)) ]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly factorization = poly if factorization.is_Mul: reducibles |= set(factorization.args) else: reducibles.add(factorization) def _integrate(field=None): irreducibles = set() for poly in reducibles: for z in poly.free_symbols: if z in V: break # should this be: `irreducibles |= \ else: # set(root_factors(poly, z, filter=field))` continue # and the line below deleted? # | # V irreducibles |= set(root_factors(poly, z, filter=field)) log_coeffs, log_part = [], [] B = _symbols('B', len(irreducibles)) # Note: the ordering matters here for poly, b in reversed(list(ordered(zip(irreducibles, B)))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancelation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part / poly_denom + Add(*log_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set() def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) numer = ring.from_expr(raw_numer) solution = solve_lin_sys(numer.coeffs(), coeff_ring) if solution is None: return else: solution = [(coeff_ring.symbols[coeff_ring.index(k)], v.as_expr()) for k, v in solution.items()] return candidate.subs(solution).subs( list(zip(poly_coeffs, [S.Zero] * len(poly_coeffs)))) if not (F.free_symbols - set(V)): solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand(force=True) if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep * antideriv else: if retries >= 0: result = heurisch( f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep * result return
def dot(self, p2): """Return dot product of self with another Point.""" p2 = Point(p2) return Add(*[a*b for a, b in zip(self, p2)])
def doit(self, **hints): """ Perform the integration using any hints given. Examples ======== >>> from diofant import Integral >>> from diofant.abc import x, i >>> Integral(x**i, (i, 1, 3)).doit() Piecewise((2, Eq(log(x), 0)), (x**3/log(x) - x/log(x), true)) See Also ======== diofant.integrals.trigonometry.trigintegrate diofant.integrals.heurisch.heurisch diofant.integrals.rationaltools.ratint diofant.integrals.integrals.Integral.as_sum : Approximate the integral using a sum """ if not hints.get('integrals', True): return self deep = hints.get('deep', True) meijerg = hints.get('meijerg', None) conds = hints.get('conds', 'piecewise') risch = hints.get('risch', None) if conds not in ['separate', 'piecewise', 'none']: raise ValueError('conds must be one of "separate", "piecewise", ' '"none", got: %s' % conds) if risch and any(len(xab) > 1 for xab in self.limits): raise ValueError( 'risch=True is only allowed for indefinite integrals.') # check for the trivial zero if self.is_zero: return S.Zero # now compute and check the function function = self.function if isinstance(function, MatrixBase): return function.applyfunc( lambda f: self.func(f, self.limits).doit(**hints)) if deep: function = function.doit(**hints) if function.is_zero: return S.Zero # There is no trivial answer, so continue undone_limits = [] # ulj = free symbols of any undone limits' upper and lower limits ulj = set() for xab in self.limits: # compute uli, the free symbols in the # Upper and Lower limits of limit I if len(xab) == 1: uli = set(xab[:1]) elif len(xab) == 2: uli = xab[1].free_symbols elif len(xab) == 3: uli = xab[1].free_symbols.union(xab[2].free_symbols) # this integral can be done as long as there is no blocking # limit that has been undone. An undone limit is blocking if # it contains an integration variable that is in this limit's # upper or lower free symbols or vice versa if xab[0] in ulj or any(v[0] in uli for v in undone_limits): undone_limits.append(xab) ulj.update(uli) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue # There are a number of tradeoffs in using the Meijer G method. # It can sometimes be a lot faster than other methods, and # sometimes slower. And there are certain types of integrals for # which it is more likely to work than others. # These heuristics are incorporated in deciding what integration # methods to try, in what order. # See the integrate() docstring for details. def try_meijerg(function, xab): ret = None if len(xab) == 3 and meijerg is not False: x, a, b = xab try: res = meijerint_definite(function, x, a, b) except NotImplementedError: from diofant.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') res = None if res is not None: f, cond = res if conds == 'piecewise': ret = Piecewise((f, cond), (self.func(function, (x, a, b)), True)) elif conds == 'separate': if len(self.limits) != 1: raise ValueError( 'conds=separate not supported in ' 'multiple integrals') ret = f, cond else: ret = f return ret meijerg1 = meijerg if len(xab) == 3 and xab[1].is_extended_real and xab[2].is_extended_real \ and not function.is_Poly and \ (xab[1].has(oo, -oo) or xab[2].has(oo, -oo)): ret = try_meijerg(function, xab) if ret is not None: function = ret continue else: meijerg1 = False # If the special meijerg code did not succeed in finding a definite # integral, then the code using meijerint_indefinite will not either # (it might find an antiderivative, but the answer is likely to be # nonsensical). # Thus if we are requested to only use Meijer G-function methods, # we give up at this stage. Otherwise we just disable G-function # methods. if meijerg1 is False and meijerg is True: antideriv = None else: antideriv = self._eval_integral(function, xab[0], meijerg=meijerg1, risch=risch, conds=conds) if antideriv is None and meijerg1 is True: ret = try_meijerg(function, xab) if ret is not None: function = ret continue if antideriv is None: undone_limits.append(xab) function = self.func(*([function] + [xab])).factor() factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue else: if len(xab) == 1: function = antideriv else: if len(xab) == 3: x, a, b = xab elif len(xab) == 2: x, b = xab a = None else: raise NotImplementedError if deep: if isinstance(a, Basic): a = a.doit(**hints) if isinstance(b, Basic): b = b.doit(**hints) if antideriv.is_Poly: gens = list(antideriv.gens) gens.remove(x) antideriv = antideriv.as_expr() function = antideriv._eval_interval(x, a, b) function = Poly(function, *gens) elif (isinstance(antideriv, Add) and any( isinstance(t, Integral) for t in antideriv.args)): function = Add(*[ i._eval_interval(x, a, b) for i in Add.make_args(antideriv) ]) else: try: function = antideriv._eval_interval(x, a, b) except NotImplementedError: # This can happen if _eval_interval depends in a # complicated way on limits that cannot be computed undone_limits.append(xab) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function return function
def test_equality(r, alg="Greedy"): return r == Add(*[Rational(1, i) for i in egyptian_fraction(r, alg)])
def add_terms(terms, prec, target_prec): """ Helper for evalf_add. Adds a list of (mpfval, accuracy) terms. Returns ------- - None, None if there are no non-zero terms; - terms[0] if there is only 1 term; - scaled_zero if the sum of the terms produces a zero by cancellation e.g. mpfs representing 1 and -1 would produce a scaled zero which need special handling since they are not actually zero and they are purposely malformed to ensure that they can't be used in anything but accuracy calculations; - a tuple that is scaled to target_prec that corresponds to the sum of the terms. The returned mpf tuple will be normalized to target_prec; the input prec is used to define the working precision. XXX explain why this is needed and why one can't just loop using mpf_add """ terms = [t for t in terms if not iszero(t)] if not terms: return None, None elif len(terms) == 1: return terms[0] # see if any argument is NaN or oo and thus warrants a special return special = [] from diofant.core.numbers import Float for t in terms: arg = Float._new(t[0], 1) if arg is S.NaN or arg.is_infinite: special.append(arg) if special: from diofant.core.add import Add rv = evalf(Add(*special), prec + 4, {}) return rv[0], rv[2] working_prec = 2 * prec sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF for x, accuracy in terms: sign, man, exp, bc = x if sign: man = -man absolute_error = max(absolute_error, bc + exp - accuracy) delta = exp - sum_exp if exp >= sum_exp: # x much larger than existing sum? # first: quick test if ((delta > working_prec) and ((not sum_man) or delta - bitcount(abs(sum_man)) > working_prec)): sum_man = man sum_exp = exp else: sum_man += (man << delta) else: delta = -delta # x much smaller than existing sum? if delta - bc > working_prec: if not sum_man: sum_man, sum_exp = man, exp else: sum_man = (sum_man << delta) + man sum_exp = exp if not sum_man: return scaled_zero(absolute_error) if sum_man < 0: sum_sign = 1 sum_man = -sum_man else: sum_sign = 0 sum_bc = bitcount(sum_man) sum_accuracy = sum_exp + sum_bc - absolute_error r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec, rnd), sum_accuracy return r