示例#1
0
 def _eval_expand_basic(self, **hints):
     summand = self.function.expand(**hints)
     if summand.is_Add and summand.is_commutative:
         return Add(*[self.func(i, *self.limits) for i in summand.args])
     elif summand != self.function:
         return self.func(summand, *self.limits)
     return self
示例#2
0
 def _eval_nseries(self, x, n, logx):
     expr = self.as_dummy()
     symb = x
     for l in expr.limits:
         if x in l[1:]:
             symb = l[0]
             break
     terms, order = expr.function.nseries(x=symb, n=n,
                                          logx=logx).as_coeff_add(Order)
     return integrate(terms, *expr.limits) + Add(*order) * x
示例#3
0
 def _eval_nseries(self, x, n, logx):
     if len(self.args) == 1:
         from diofant import O, Add, Integer, factorial
         x = self.args[0]
         o = O(x**n, x)
         l = S.Zero
         if n > 0:
             l += Add(*[Integer(-k)**(k - 1)*x**k/factorial(k)
                        for k in range(1, n)])
         return l + o
     return super(LambertW, self)._eval_nseries(x, n=n, logx=logx)
示例#4
0
    def _eval_expand_log(self, deep=True, **hints):
        from diofant import unpolarify, expand_log
        from diofant.concrete import Sum, Product
        force = hints.get('force', False)
        if (len(self.args) == 2):
            return expand_log(self.func(*self.args), deep=deep, force=force)
        arg = self.args[0]
        if arg.is_Integer:
            # remove perfect powers
            p = perfect_power(int(arg))
            if p is not False:
                return p[1]*self.func(p[0])
        elif arg.is_Mul:
            expr = []
            nonpos = []
            for x in arg.args:
                if force or x.is_positive or x.is_polar:
                    a = self.func(x)
                    if isinstance(a, log):
                        expr.append(self.func(x)._eval_expand_log(**hints))
                    else:
                        expr.append(a)
                elif x.is_negative:
                    a = self.func(-x)
                    expr.append(a)
                    nonpos.append(S.NegativeOne)
                else:
                    nonpos.append(x)
            return Add(*expr) + log(Mul(*nonpos))
        elif arg.is_Pow:
            if force or (arg.exp.is_extended_real and arg.base.is_positive) or \
                    arg.base.is_polar:
                b = arg.base
                e = arg.exp
                a = self.func(b)
                if isinstance(a, log):
                    return unpolarify(e) * a._eval_expand_log(**hints)
                else:
                    return unpolarify(e) * a
        elif isinstance(arg, Product):
            if arg.function.is_positive:
                return Sum(log(arg.function), *arg.limits)

        return self.func(arg)
示例#5
0
def evalf_log(expr, prec, options):
    from diofant import Abs, Add, log

    if len(expr.args) > 1:
        expr = expr.doit()
        return evalf(expr, prec, options)

    arg = expr.args[0]
    workprec = prec + 10
    xre, xim, xacc, _ = evalf(arg, workprec, options)

    if xim:
        # XXX: use get_abs etc instead
        re = evalf_log(log(Abs(arg, evaluate=False), evaluate=False), prec,
                       options)
        im = mpf_atan2(xim, xre or fzero, prec)
        return re[0], im, re[2], prec

    imaginary_term = (mpf_cmp(xre, fzero) < 0)

    re = mpf_log(mpf_abs(xre), prec, rnd)
    size = fastlog(re)
    if prec - size > workprec:
        # We actually need to compute 1+x accurately, not x
        arg = Add(S.NegativeOne, arg, evaluate=False)
        xre, xim, _, _ = evalf_add(arg, prec, options)
        prec2 = workprec - fastlog(xre)
        # xre is now x - 1 so we add 1 back here to calculate x
        re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)

    re_acc = prec

    if imaginary_term:
        return re, mpf_pi(prec), re_acc, prec
    else:
        return re, None, re_acc, None
示例#6
0
    def eval(cls, p, q):
        from diofant.core.add import Add
        from diofant.core.mul import Mul
        from diofant.core.singleton import S
        from diofant.core.exprtools import gcd_terms
        from diofant.polys.polytools import gcd

        def doit(p, q):
            """Try to return p % q if both are numbers or +/-p is known
            to be less than or equal q.
            """

            if p.is_infinite or q.is_infinite:
                return nan
            if (p == q or p == -q
                    or p.is_Pow and p.exp.is_Integer and p.base == q
                    or p.is_integer and q == 1):
                return S.Zero

            if q.is_Number:
                if p.is_Number:
                    return (p % q)
                if q == 2:
                    if p.is_even:
                        return S.Zero
                    elif p.is_odd:
                        return S.One

            # by ratio
            r = p / q
            try:
                d = int(r)
            except TypeError:
                pass
            else:
                rv = p - d * q
                if (rv * q).is_nonnegative:
                    return rv
                elif (rv * q).is_nonpositive:
                    return rv + q

            # by difference
            d = p - q
            if d.is_negative:
                if q.is_negative:
                    return d
                elif q.is_positive:
                    return p

        rv = doit(p, q)
        if rv is not None:
            return rv

        # denest
        if p.func is cls:
            # easy
            qinner = p.args[1]
            if qinner == q:
                return p
            # XXX other possibilities?

        # extract gcd; any further simplification should be done by the user
        G = gcd(p, q)
        if G != 1:
            p, q = [
                gcd_terms(i / G, clear=False, fraction=False) for i in (p, q)
            ]
        pwas, qwas = p, q

        # simplify terms
        # (x + y + 2) % x -> Mod(y + 2, x)
        if p.is_Add:
            args = []
            for i in p.args:
                a = cls(i, q)
                if a.count(cls) > i.count(cls):
                    args.append(i)
                else:
                    args.append(a)
            if args != list(p.args):
                p = Add(*args)

        else:
            # handle coefficients if they are not Rational
            # since those are not handled by factor_terms
            # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y)
            cp, p = p.as_coeff_Mul()
            cq, q = q.as_coeff_Mul()
            ok = False
            if not cp.is_Rational or not cq.is_Rational:
                r = cp % cq
                if r == 0:
                    G *= cq
                    p *= int(cp / cq)
                    ok = True
            if not ok:
                p = cp * p
                q = cq * q

        # simple -1 extraction
        if p.could_extract_minus_sign() and q.could_extract_minus_sign():
            G, p, q = [-i for i in (G, p, q)]

        # check again to see if p and q can now be handled as numbers
        rv = doit(p, q)
        if rv is not None:
            return rv * G

        # put 1.0 from G on inside
        if G.is_Float and G == 1:
            p *= G
            return cls(p, q, evaluate=False)
        elif G.is_Mul and G.args[0].is_Float and G.args[0] == 1:
            p = G.args[0] * p
            G = Mul._from_args(G.args[1:])
        return G * cls(p, q, evaluate=(p, q) != (pwas, qwas))
示例#7
0
def test_core_add():
    for c in (Add, Add(x, 4)):
        check(c)
示例#8
0
    def _eval_integral(self,
                       f,
                       x,
                       meijerg=None,
                       risch=None,
                       conds='piecewise'):
        """
        Calculate the anti-derivative to the function f(x).

        The following algorithms are applied (roughly in this order):

        1. Simple heuristics (based on pattern matching and integral table):

           - most frequently used functions (e.g. polynomials, products of trig functions)

        2. Integration of rational functions:

           - A complete algorithm for integrating rational functions is
             implemented (the Lazard-Rioboo-Trager algorithm).  The algorithm
             also uses the partial fraction decomposition algorithm
             implemented in apart() as a preprocessor to make this process
             faster.  Note that the integral of a rational function is always
             elementary, but in general, it may include a RootSum.

        3. Full Risch algorithm:

           - The Risch algorithm is a complete decision
             procedure for integrating elementary functions, which means that
             given any elementary function, it will either compute an
             elementary antiderivative, or else prove that none exists.
             Currently, part of transcendental case is implemented, meaning
             elementary integrals containing exponentials, logarithms, and
             (soon!) trigonometric functions can be computed.  The algebraic
             case, e.g., functions containing roots, is much more difficult
             and is not implemented yet.

           - If the routine fails (because the integrand is not elementary, or
             because a case is not implemented yet), it continues on to the
             next algorithms below.  If the routine proves that the integrals
             is nonelementary, it still moves on to the algorithms below,
             because we might be able to find a closed-form solution in terms
             of special functions.  If risch=True, however, it will stop here.

        4. The Meijer G-Function algorithm:

           - This algorithm works by first rewriting the integrand in terms of
             very general Meijer G-Function (meijerg in Diofant), integrating
             it, and then rewriting the result back, if possible.  This
             algorithm is particularly powerful for definite integrals (which
             is actually part of a different method of Integral), since it can
             compute closed-form solutions of definite integrals even when no
             closed-form indefinite integral exists.  But it also is capable
             of computing many indefinite integrals as well.

           - Another advantage of this method is that it can use some results
             about the Meijer G-Function to give a result in terms of a
             Piecewise expression, which allows to express conditionally
             convergent integrals.

           - Setting meijerg=True will cause integrate() to use only this
             method.

        5. The Heuristic Risch algorithm:

           - This is a heuristic version of the Risch algorithm, meaning that
             it is not deterministic.  This is tried as a last resort because
             it can be very slow.  It is still used because not enough of the
             full Risch algorithm is implemented, so that there are still some
             integrals that can only be computed using this method.  The goal
             is to implement enough of the Risch and Meijer G-function methods
             so that this can be deleted.
        """
        from diofant.integrals.deltafunctions import deltaintegrate
        from diofant.integrals.heurisch import heurisch, heurisch_wrapper
        from diofant.integrals.rationaltools import ratint
        from diofant.integrals.risch import risch_integrate

        if risch:
            try:
                return risch_integrate(f, x, conds=conds)
            except NotImplementedError:
                return

        # if it is a poly(x) then let the polynomial integrate itself (fast)
        #
        # It is important to make this check first, otherwise the other code
        # will return a diofant expression instead of a Polynomial.
        #
        # see Polynomial for details.
        if isinstance(f, Poly) and not meijerg:
            return f.integrate(x)

        # Piecewise antiderivatives need to call special integrate.
        if f.func is Piecewise:
            return f._eval_integral(x)

        # let's cut it short if `f` does not depend on `x`
        if not f.has(x):
            return f * x

        # try to convert to poly(x) and then integrate if successful (fast)
        poly = f.as_poly(x)

        if poly is not None and not meijerg:
            return poly.integrate().as_expr()

        if risch is not False:
            try:
                result, i = risch_integrate(f,
                                            x,
                                            separate_integral=True,
                                            conds=conds)
            except NotImplementedError:
                pass
            else:
                if i:
                    # There was a nonelementary integral. Try integrating it.
                    return result + i.doit(risch=False)
                else:
                    return result

        # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ...
        # we are going to handle Add terms separately,
        # if `f` is not Add -- we only have one term

        # Note that in general, this is a bad idea, because Integral(g1) +
        # Integral(g2) might not be computable, even if Integral(g1 + g2) is.
        # For example, Integral(x**x + x**x*log(x)).  But many heuristics only
        # work term-wise.  So we compute this step last, after trying
        # risch_integrate.  We also try risch_integrate again in this loop,
        # because maybe the integral is a sum of an elementary part and a
        # nonelementary part (like erf(x) + exp(x)).  risch_integrate() is
        # quite fast, so this is acceptable.
        parts = []
        args = Add.make_args(f)
        for g in args:
            coeff, g = g.as_independent(x)

            # g(x) = const
            if g is S.One and not meijerg:
                parts.append(coeff * x)
                continue

            # g(x) = expr + O(x**n)
            order_term = g.getO()

            if order_term is not None:
                h = self._eval_integral(g.removeO(), x)

                if h is not None:
                    parts.append(coeff *
                                 (h + self.func(order_term, *self.limits)))
                    continue

                # NOTE: if there is O(x**n) and we fail to integrate then there is
                # no point in trying other methods because they will fail anyway.
                return

            #               c
            # g(x) = (a*x+b)
            if g.is_Pow and not g.exp.has(x) and not meijerg:
                a = Wild('a', exclude=[x])
                b = Wild('b', exclude=[x])

                M = g.base.match(a * x + b)

                if M is not None:
                    if g.exp == -1:
                        h = log(g.base)
                    elif conds != 'piecewise':
                        h = g.base**(g.exp + 1) / (g.exp + 1)
                    else:
                        h1 = log(g.base)
                        h2 = g.base**(g.exp + 1) / (g.exp + 1)
                        h = Piecewise((h1, Eq(g.exp, -1)), (h2, True))

                    parts.append(coeff * h / M[a])
                    continue

            #        poly(x)
            # g(x) = -------
            #        poly(x)
            if g.is_rational_function(x) and not meijerg:
                parts.append(coeff * ratint(g, x))
                continue

            if not meijerg:
                # g(x) = Mul(trig)
                h = trigintegrate(g, x, conds=conds)
                if h is not None:
                    parts.append(coeff * h)
                    continue

                # g(x) has at least a DiracDelta term
                h = deltaintegrate(g, x)
                if h is not None:
                    parts.append(coeff * h)
                    continue

                # Try risch again.
                if risch is not False:
                    try:
                        h, i = risch_integrate(g,
                                               x,
                                               separate_integral=True,
                                               conds=conds)
                    except NotImplementedError:
                        h = None
                    else:
                        if i:
                            h = h + i.doit(risch=False)

                        parts.append(coeff * h)
                        continue

                # fall back to heurisch
                try:
                    if conds == 'piecewise':
                        h = heurisch_wrapper(g, x, hints=[])
                    else:
                        h = heurisch(g, x, hints=[])
                except PolynomialError:
                    # XXX: this exception means there is a bug in the
                    # implementation of heuristic Risch integration
                    # algorithm.
                    h = None
            else:
                h = None

            if meijerg is not False and h is None:
                # rewrite using G functions
                try:
                    h = meijerint_indefinite(g, x)
                except NotImplementedError:
                    from diofant.integrals.meijerint import _debug
                    _debug('NotImplementedError from meijerint_definite')
                    res = None
                if h is not None:
                    parts.append(coeff * h)
                    continue

            # if we failed maybe it was because we had
            # a product that could have been expanded,
            # so let's try an expansion of the whole
            # thing before giving up; we don't try this
            # at the outset because there are things
            # that cannot be solved unless they are
            # NOT expanded e.g., x**x*(1+log(x)). There
            # should probably be a checker somewhere in this
            # routine to look for such cases and try to do
            # collection on the expressions if they are already
            # in an expanded form
            if not h and len(args) == 1:
                f = f.expand(mul=True, deep=False)
                if f.is_Add:
                    # Note: risch will be identical on the expanded
                    # expression, but maybe it will be able to pick out parts,
                    # like x*(exp(x) + erf(x)).
                    return self._eval_integral(f,
                                               x,
                                               meijerg=meijerg,
                                               risch=risch,
                                               conds=conds)

            if h is not None:
                parts.append(coeff * h)
            else:
                return

        return Add(*parts)
示例#9
0
def rsolve_poly(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order
    `k` with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f`, where `f` is a polynomial, we seek for
    all polynomial solutions over field `K` of characteristic zero.

    The algorithm performs two basic steps:

        (1) Compute degree `N` of the general polynomial solution.
        (2) Find all polynomials of degree `N` or less
            of `\operatorname{L} y = f`.

    There are two methods for computing the polynomial solutions.
    If the degree bound is relatively small, i.e. it's smaller than
    or equal to the order of the recurrence, then naive method of
    undetermined coefficients is being used. This gives system
    of algebraic equations with `N+1` unknowns.

    In the other case, the algorithm performs transformation of the
    initial equation to an equivalent one, for which the system of
    algebraic equations has only `r` indeterminates. This method is
    quite sophisticated (in comparison with the naive one) and was
    invented together by Abramov, Bronstein and Petkovšek.

    It is possible to generalize the algorithm implemented here to
    the case of linear q-difference and differential equations.

    Lets say that we would like to compute `m`-th Bernoulli polynomial
    up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}`
    recurrence, which has solution `b(n) = B_m + C`. For example:

    >>> from diofant import Symbol, rsolve_poly
    >>> n = Symbol('n', integer=True)

    >>> rsolve_poly([-1, 1], 4*n**3, n)
    C0 + n**4 - 2*n**3 + n**2

    References
    ==========

    .. [1] S. A. Abramov, M. Bronstein and M. Petkovšek, On polynomial
           solutions of linear operator equations, in: T. Levelt, ed.,
           Proc. ISSAC '95, ACM Press, New York, 1995, 290-296.

    .. [2] M. Petkovšek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [3] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996.

    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return

    homogeneous = f.is_zero

    r = len(coeffs) - 1

    coeffs = [Poly(coeff, n) for coeff in coeffs]

    g = gcd_list(coeffs + [f], n, polys=True)
    if not g.is_ground:
        coeffs = [quo(c, g, n, polys=False) for c in coeffs]
        f = quo(f, g, n, polys=False)

    polys = [Poly(0, n)] * (r + 1)
    terms = [(S.Zero, S.NegativeInfinity)] * (r + 1)

    for i in range(0, r + 1):
        for j in range(i, r + 1):
            polys[i] += coeffs[j] * binomial(j, i)

        if not polys[i].is_zero:
            (exp, ), coeff = polys[i].LT()
            terms[i] = (coeff, exp)

    d = b = terms[0][1]

    for i in range(1, r + 1):
        if terms[i][1] > d:
            d = terms[i][1]

        if terms[i][1] - i > b:
            b = terms[i][1] - i

    d, b = int(d), int(b)

    x = Dummy('x')

    degree_poly = S.Zero

    for i in range(0, r + 1):
        if terms[i][1] - i == b:
            degree_poly += terms[i][0] * FallingFactorial(x, i)

    nni_roots = list(
        roots(degree_poly, x, filter='Z', predicate=lambda r: r >= 0).keys())

    if nni_roots:
        N = [max(nni_roots)]
    else:
        N = []

    if homogeneous:
        N += [-b - 1]
    else:
        N += [f.as_poly(n).degree() - b, -b - 1]

    N = int(max(N))

    if N < 0:
        if homogeneous:
            if hints.get('symbols', False):
                return S.Zero, []
            else:
                return S.Zero
        else:
            return

    if N <= r:
        C = []
        y = E = S.Zero

        for i in range(0, N + 1):
            C.append(Symbol('C' + str(i)))
            y += C[i] * n**i

        for i in range(0, r + 1):
            E += coeffs[i].as_expr() * y.subs(n, n + i)

        solutions = solve_undetermined_coeffs(E - f, C, n)

        if solutions is not None:
            C = [c for c in C if (c not in solutions)]
            result = y.subs(solutions)
        else:
            return  # TBD
    else:
        A = r
        U = N + A + b + 1

        nni_roots = list(
            roots(polys[r], filter='Z', predicate=lambda r: r >= 0).keys())

        if nni_roots != []:
            a = max(nni_roots) + 1
        else:
            a = S.Zero

        def _zero_vector(k):
            return [S.Zero] * k

        def _one_vector(k):
            return [S.One] * k

        def _delta(p, k):
            B = S.One
            D = p.subs(n, a + k)

            for i in range(1, k + 1):
                B *= -Rational(k - i + 1, i)
                D += B * p.subs(n, a + k - i)

            return D

        alpha = {}

        for i in range(-A, d + 1):
            I = _one_vector(d + 1)

            for k in range(1, d + 1):
                I[k] = I[k - 1] * (x + i - k + 1) / k

            alpha[i] = S.Zero

            for j in range(0, A + 1):
                for k in range(0, d + 1):
                    B = binomial(k, i + j)
                    D = _delta(polys[j].as_expr(), k)

                    alpha[i] += I[k] * B * D

        V = Matrix(U, A, lambda i, j: int(i == j))

        if homogeneous:
            for i in range(A, U):
                v = _zero_vector(A)

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom
        else:
            G = _zero_vector(U)

            for i in range(A, U):
                v = _zero_vector(A)
                g = S.Zero

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                    g += B * G[i - k]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom

                G[i] = (_delta(f, i - A) - g) / denom

        P, Q = _one_vector(U), _zero_vector(A)

        for i in range(1, U):
            P[i] = (P[i - 1] * (n - a - i + 1) / i).expand()

        for i in range(0, A):
            Q[i] = Add(*[(v * p).expand() for v, p in zip(V[:, i], P)])

        if not homogeneous:
            h = Add(*[(g * p).expand() for g, p in zip(G, P)])

        C = [Symbol('C' + str(i)) for i in range(0, A)]

        def g(i):
            return Add(*[c * _delta(q, i) for c, q in zip(C, Q)])

        if homogeneous:
            E = [g(i) for i in range(N + 1, U)]
        else:
            E = [g(i) + _delta(h, i) for i in range(N + 1, U)]

        if E != []:
            solutions = solve(E, *C)

            if not solutions:
                if homogeneous:
                    if hints.get('symbols', False):
                        return S.Zero, []
                    else:
                        return S.Zero
                else:
                    return
        else:
            solutions = {}

        if homogeneous:
            result = S.Zero
        else:
            result = h

        for c, q in list(zip(C, Q)):
            if c in solutions:
                s = solutions[c] * q
                C.remove(c)
            else:
                s = c * q

            result += s.expand()

    if hints.get('symbols', False):
        return result, C
    else:
        return result
示例#10
0
def rsolve_hyper(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order `k`
    with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f` we seek for all hypergeometric solutions
    over field `K` of characteristic zero.

    The inhomogeneous part can be either hypergeometric or a sum
    of a fixed number of pairwise dissimilar hypergeometric terms.

    The algorithm performs three basic steps:

        (1) Group together similar hypergeometric terms in the
            inhomogeneous part of `\operatorname{L} y = f`, and find
            particular solution using Abramov's algorithm.

        (2) Compute generating set of `\operatorname{L}` and find basis
            in it, so that all solutions are linearly independent.

        (3) Form final solution with the number of arbitrary
            constants equal to dimension of basis of `\operatorname{L}`.

    Term `a(n)` is hypergeometric if it is annihilated by first order
    linear difference equations with polynomial coefficients or, in
    simpler words, if consecutive term ratio is a rational function.

    The output of this procedure is a linear combination of fixed
    number of hypergeometric terms. However the underlying method
    can generate larger class of solutions - D'Alembertian terms.

    Note also that this method not only computes the kernel of the
    inhomogeneous equation, but also reduces in to a basis so that
    solutions generated by this procedure are linearly independent

    Examples
    ========

    >>> from diofant.solvers import rsolve_hyper
    >>> from diofant.abc import x

    >>> rsolve_hyper([-1, -1, 1], 0, x)
    C0*(1/2 + sqrt(5)/2)**x + C1*(-sqrt(5)/2 + 1/2)**x

    >>> rsolve_hyper([-1, 1], 1 + x, x)
    C0 + x*(x + 1)/2

    References
    ==========

    .. [1] M. Petkovšek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [2] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996.
    """
    coeffs = list(map(sympify, coeffs))

    f = sympify(f)

    r, kernel, symbols = len(coeffs) - 1, [], set()

    if not f.is_zero:
        if f.is_Add:
            similar = {}

            for g in f.expand().args:
                if not g.is_hypergeometric(n):
                    return

                for h in similar.keys():
                    if hypersimilar(g, h, n):
                        similar[h] += g
                        break
                else:
                    similar[g] = S.Zero

            inhomogeneous = []

            for g, h in similar.items():
                inhomogeneous.append(g + h)
        elif f.is_hypergeometric(n):
            inhomogeneous = [f]
        else:
            return

        for i, g in enumerate(inhomogeneous):
            coeff, polys = S.One, coeffs[:]
            denoms = [S.One] * (r + 1)

            s = hypersimp(g, n)

            for j in range(1, r + 1):
                coeff *= s.subs(n, n + j - 1)

                p, q = coeff.as_numer_denom()

                polys[j] *= p
                denoms[j] = q

            for j in range(0, r + 1):
                polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:]))

            R = rsolve_ratio(polys, Mul(*denoms), n, symbols=True)
            if R is not None:
                R, syms = R
                if syms:
                    R = R.subs(zip(syms, [0] * len(syms)))

            if R:
                inhomogeneous[i] *= R
            else:
                return

            result = Add(*inhomogeneous)
            result = simplify(result)
    else:
        result = S.Zero

    Z = Dummy('Z')

    p, q = coeffs[0], coeffs[r].subs(n, n - r + 1)

    p_factors = [z for z in roots(p, n).keys()]
    q_factors = [z for z in roots(q, n).keys()]

    factors = [(S.One, S.One)]

    for p in p_factors:
        for q in q_factors:
            if p.is_integer and q.is_integer and p <= q:
                continue
            else:
                factors += [(n - p, n - q)]

    p = [(n - p, S.One) for p in p_factors]
    q = [(S.One, n - q) for q in q_factors]

    factors = p + factors + q

    for A, B in factors:
        polys, degrees = [], []
        D = A * B.subs(n, n + r - 1)

        for i in range(0, r + 1):
            a = Mul(*[A.subs(n, n + j) for j in range(0, i)])
            b = Mul(*[B.subs(n, n + j) for j in range(i, r)])

            poly = quo(coeffs[i] * a * b, D, n)
            polys.append(poly.as_poly(n))

            if not poly.is_zero:
                degrees.append(polys[i].degree())

        d, poly = max(degrees), S.Zero

        for i in range(0, r + 1):
            coeff = polys[i].nth(d)

            if coeff is not S.Zero:
                poly += coeff * Z**i

        for z in roots(poly, Z).keys():
            if z.is_zero:
                continue

            (C, s) = rsolve_poly([polys[i] * z**i for i in range(r + 1)],
                                 0,
                                 n,
                                 symbols=True)

            if C is not None and C is not S.Zero:
                symbols |= set(s)

                ratio = z * A * C.subs(n, n + 1) / B / C
                ratio = simplify(ratio)

                skip = max([-1] + [
                    v for v in roots(Mul(*ratio.as_numer_denom()), n).keys()
                    if v.is_Integer
                ]) + 1
                K = product(ratio, (n, skip, n - 1))

                if K.has(factorial, FallingFactorial, RisingFactorial):
                    K = simplify(K)

                if casoratian(kernel + [K], n, zero=False) != 0:
                    kernel.append(K)

    kernel.sort(key=default_sort_key)
    sk = list(zip(numbered_symbols('C'), kernel))

    for C, ker in sk:
        result += C * ker

    if hints.get('symbols', False):
        symbols |= {s for s, k in sk}
        return result, list(symbols)
    else:
        return result
示例#11
0
 def g(i):
     return Add(*[c * _delta(q, i) for c, q in zip(C, Q)])
示例#12
0
    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.free_symbols:
                if z in V:
                    break  # should this be: `irreducibles |= \
            else:  # set(root_factors(poly, z, filter=field))`
                continue  # and the line below deleted?
                #                          |
                #                          V
            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        # Note: the ordering matters here
        for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancelation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part / poly_denom + Add(*log_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set()

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass  # ignore trivial numbers
            elif expr in syms:
                pass  # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)

        numer = ring.from_expr(raw_numer)

        solution = solve_lin_sys(numer.coeffs(), coeff_ring)

        if solution is None:
            return
        else:
            solution = [(coeff_ring.symbols[coeff_ring.index(k)], v.as_expr())
                        for k, v in solution.items()]
            return candidate.subs(solution).subs(
                list(zip(poly_coeffs, [S.Zero] * len(poly_coeffs))))
示例#13
0
 def _derivation(h):
     return Add(*[d * h.diff(v) for d, v in zip(numers, V)])
示例#14
0
def heurisch(f,
             x,
             rewrite=False,
             hints=None,
             mappings=None,
             retries=3,
             degree_offset=0,
             unnecessary_permutations=None):
    """
    Compute indefinite integral using heuristic Risch algorithm.

    This is a heuristic approach to indefinite integration in finite
    terms using the extended heuristic (parallel) Risch algorithm, based
    on Manuel Bronstein's "Poor Man's Integrator" [1]_.

    The algorithm supports various classes of functions including
    transcendental elementary or special functions like Airy,
    Bessel, Whittaker and Lambert.

    Note that this algorithm is not a decision procedure. If it isn't
    able to compute the antiderivative for a given function, then this is
    not a proof that such a functions does not exist.  One should use
    recursive Risch algorithm in such case.  It's an open question if
    this algorithm can be made a full decision procedure.

    This is an internal integrator procedure. You should use toplevel
    'integrate' function in most cases,  as this procedure needs some
    preprocessing steps and otherwise may fail.

    Parameters
    ==========

    heurisch(f, x, rewrite=False, hints=None)

    f : Expr
        expression
    x : Symbol
        variable

    rewrite : Boolean, optional
        force rewrite 'f' in terms of 'tan' and 'tanh', default False.
    hints : None or list
        a list of functions that may appear in anti-derivate.  If
        None (default) - no suggestions at all, if empty list - try
        to figure out.

    Examples
    ========

    >>> from diofant import tan
    >>> from diofant.integrals.heurisch import heurisch
    >>> from diofant.abc import x, y

    >>> heurisch(y*tan(x), x)
    y*log(tan(x)**2 + 1)/2

    References
    ==========

    .. [1] Manuel Bronstein's "Poor Man's Integrator",
           http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html

    .. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
           Method and its Implementation in Maple, Proceedings of
           ISSAC'89, ACM Press, 212-217.

    .. [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
           Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.

    .. [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
           Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.

    .. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
           Algorithm (II), ACM Transactions on Mathematical
           Software 11 (1985), 356-362.

    See Also
    ========

    diofant.integrals.integrals.Integral.doit
    diofant.integrals.integrals.Integral
    diofant.integrals.heurisch.components
    """
    f = sympify(f)
    if x not in f.free_symbols:
        return f * x

    if not f.is_Add:
        indep, f = f.as_independent(x)
    else:
        indep = S.One

    rewritables = {
        (sin, cos, cot): tan,
        (sinh, cosh, coth): tanh,
    }

    if rewrite:
        for candidates, rule in rewritables.items():
            f = f.rewrite(candidates, rule)
    else:
        for candidates in rewritables.keys():
            if f.has(*candidates):
                break
        else:
            rewrite = True

    terms = components(f, x)

    if hints is not None:
        if not hints:
            a = Wild('a', exclude=[x])
            b = Wild('b', exclude=[x])
            c = Wild('c', exclude=[x])

            for g in set(terms):  # using copy of terms
                if g.is_Function:
                    if g.func is li:
                        M = g.args[0].match(a * x**b)

                        if M is not None:
                            terms.add(
                                x *
                                (li(M[a] * x**M[b]) -
                                 (M[a] * x**M[b])**(-1 / M[b]) * Ei(
                                     (M[b] + 1) * log(M[a] * x**M[b]) / M[b])))
                            # terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            # terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            # terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )

                elif g.is_Pow:
                    if g.base is S.Exp1:
                        M = g.exp.match(a * x**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a]) * x))
                            else:  # M[a].is_negative or unknown
                                terms.add(erf(sqrt(-M[a]) * x))

                        M = g.exp.match(a * x**2 + b * x + c)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(
                                    sqrt(pi / 4 * (-M[a])) *
                                    exp(M[c] - M[b]**2 / (4 * M[a])) * erfi(
                                        sqrt(M[a]) * x + M[b] /
                                        (2 * sqrt(M[a]))))
                            elif M[a].is_negative:
                                terms.add(
                                    sqrt(pi / 4 * (-M[a])) *
                                    exp(M[c] - M[b]**2 / (4 * M[a])) * erf(
                                        sqrt(-M[a]) * x - M[b] /
                                        (2 * sqrt(-M[a]))))

                        M = g.exp.match(a * log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(
                                    erfi(
                                        sqrt(M[a]) * log(x) + 1 /
                                        (2 * sqrt(M[a]))))
                            if M[a].is_negative:
                                terms.add(
                                    erf(
                                        sqrt(-M[a]) * log(x) - 1 /
                                        (2 * sqrt(-M[a]))))

                    elif g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a * x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a] / M[b]) * x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a] / M[b]) * x))

                        M = g.base.match(a * x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a] / M[b]) * x))
                            elif M[a].is_negative:
                                terms.add((-M[b] / 2 * sqrt(-M[a]) * atan(
                                    sqrt(-M[a]) * x / sqrt(M[a] * x**2 - M[b]))
                                           ))

        else:
            terms |= set(hints)

    for g in set(terms):  # using copy of terms
        terms |= components(cancel(g.diff(x)), x)

    # TODO: caching is significant factor for why permutations work at all. Change this.
    V = _symbols('x', len(terms))

    # sort mapping expressions from largest to smallest (last is always x).
    mapping = list(
        reversed(
            list(
                zip(*ordered(  #
                    [(a[0].as_independent(x)[1], a)
                     for a in zip(terms, V)])))[1]))  #
    rev_mapping = {v: k for k, v in mapping}  #
    if mappings is None:  #
        # optimizing the number of permutations of mapping               #
        assert mapping[-1][0] == x  # if not, find it and correct this comment
        unnecessary_permutations = [mapping.pop(-1)]
        mappings = permutations(mapping)
    else:
        unnecessary_permutations = unnecessary_permutations or []

    def _substitute(expr):
        return expr.subs(mapping)

    for mapping in mappings:
        mapping = list(mapping)
        mapping = mapping + unnecessary_permutations
        diffs = [_substitute(cancel(g.diff(x))) for g in terms]
        denoms = [g.as_numer_denom()[1] for g in diffs]
        if all(h.is_polynomial(*V)
               for h in denoms) and _substitute(f).is_rational_function(*V):
            denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
            break
    else:
        if not rewrite:
            result = heurisch(
                f,
                x,
                rewrite=True,
                hints=hints,
                unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep * result
        return

    numers = [cancel(denom * g) for g in diffs]

    def _derivation(h):
        return Add(*[d * h.diff(v) for d, v in zip(numers, V)])

    def _deflation(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(p) is not S.Zero:
                c, q = p.as_poly(y).primitive()
                return _deflation(c) * gcd(q, q.diff(y)).as_expr()
        else:
            return p

    def _splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, _derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = _splitter(c)

                if s.as_poly(y).degree() == 0:
                    return c_split[0], q * c_split[1]

                q_split = _splitter(cancel(q / s))

                return c_split[0] * q_split[0] * s, c_split[1] * q_split[1]
        else:
            return S.One, p

    special = {}

    for term in terms:
        if term.is_Function:
            if term.func is tan:
                special[1 + _substitute(term)**2] = False
            elif term.func is tanh:
                special[1 + _substitute(term)] = False
                special[1 - _substitute(term)] = False
            elif term.func is LambertW:
                special[_substitute(term)] = True

    F = _substitute(f)

    P, Q = F.as_numer_denom()

    u_split = _splitter(denom)
    v_split = _splitter(Q)

    polys = set(list(v_split) + [u_split[0]] + list(special.keys()))

    s = u_split[0] * Mul(*[k for k, v in special.items() if v])
    polified = [p.as_poly(*V) for p in [s, P, Q]]

    if None in polified:
        return

    # --- definitions for _integrate ---
    a, b, c = [p.total_degree() for p in polified]

    poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()

    def _exponent(g):
        if g.is_Pow:
            if g.exp.is_Rational and g.exp.q != 1:
                if g.exp.p > 0:
                    return g.exp.p + g.exp.q - 1
                else:
                    return abs(g.exp.p + g.exp.q)
            else:
                return 1
        elif not g.is_Atom and g.args:
            return max([_exponent(h) for h in g.args])
        else:
            return 1

    A, B = _exponent(f), a + max(b, c)

    if A > 1 and B > 1:
        monoms = itermonomials(V, A + B - 1 + degree_offset)
    else:
        monoms = itermonomials(V, A + B + degree_offset)

    poly_coeffs = _symbols('A', len(monoms))

    poly_part = Add(*[
        poly_coeffs[i] * monomial for i, monomial in enumerate(ordered(monoms))
    ])

    reducibles = set()

    for poly in polys:
        if poly.has(*V):
            try:
                factorization = factor(poly, greedy=True)
            except PolynomialError:
                factorization = poly
            factorization = poly

            if factorization.is_Mul:
                reducibles |= set(factorization.args)
            else:
                reducibles.add(factorization)

    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.free_symbols:
                if z in V:
                    break  # should this be: `irreducibles |= \
            else:  # set(root_factors(poly, z, filter=field))`
                continue  # and the line below deleted?
                #                          |
                #                          V
            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        # Note: the ordering matters here
        for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancelation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part / poly_denom + Add(*log_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set()

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass  # ignore trivial numbers
            elif expr in syms:
                pass  # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)

        numer = ring.from_expr(raw_numer)

        solution = solve_lin_sys(numer.coeffs(), coeff_ring)

        if solution is None:
            return
        else:
            solution = [(coeff_ring.symbols[coeff_ring.index(k)], v.as_expr())
                        for k, v in solution.items()]
            return candidate.subs(solution).subs(
                list(zip(poly_coeffs, [S.Zero] * len(poly_coeffs))))

    if not (F.free_symbols - set(V)):
        solution = _integrate('Q')

        if solution is None:
            solution = _integrate()
    else:
        solution = _integrate()

    if solution is not None:
        antideriv = solution.subs(rev_mapping)
        antideriv = cancel(antideriv).expand(force=True)

        if antideriv.is_Add:
            antideriv = antideriv.as_independent(x)[1]

        return indep * antideriv
    else:
        if retries >= 0:
            result = heurisch(
                f,
                x,
                mappings=mappings,
                rewrite=rewrite,
                hints=hints,
                retries=retries - 1,
                unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep * result

        return
示例#15
0
 def dot(self, p2):
     """Return dot product of self with another Point."""
     p2 = Point(p2)
     return Add(*[a*b for a, b in zip(self, p2)])
示例#16
0
    def doit(self, **hints):
        """
        Perform the integration using any hints given.

        Examples
        ========

        >>> from diofant import Integral
        >>> from diofant.abc import x, i
        >>> Integral(x**i, (i, 1, 3)).doit()
        Piecewise((2, Eq(log(x), 0)), (x**3/log(x) - x/log(x), true))

        See Also
        ========

        diofant.integrals.trigonometry.trigintegrate
        diofant.integrals.heurisch.heurisch
        diofant.integrals.rationaltools.ratint
        diofant.integrals.integrals.Integral.as_sum : Approximate the integral using a sum
        """
        if not hints.get('integrals', True):
            return self

        deep = hints.get('deep', True)
        meijerg = hints.get('meijerg', None)
        conds = hints.get('conds', 'piecewise')
        risch = hints.get('risch', None)

        if conds not in ['separate', 'piecewise', 'none']:
            raise ValueError('conds must be one of "separate", "piecewise", '
                             '"none", got: %s' % conds)

        if risch and any(len(xab) > 1 for xab in self.limits):
            raise ValueError(
                'risch=True is only allowed for indefinite integrals.')

        # check for the trivial zero
        if self.is_zero:
            return S.Zero

        # now compute and check the function
        function = self.function

        if isinstance(function, MatrixBase):
            return function.applyfunc(
                lambda f: self.func(f, self.limits).doit(**hints))

        if deep:
            function = function.doit(**hints)
        if function.is_zero:
            return S.Zero

        # There is no trivial answer, so continue

        undone_limits = []
        # ulj = free symbols of any undone limits' upper and lower limits
        ulj = set()
        for xab in self.limits:
            # compute uli, the free symbols in the
            # Upper and Lower limits of limit I
            if len(xab) == 1:
                uli = set(xab[:1])
            elif len(xab) == 2:
                uli = xab[1].free_symbols
            elif len(xab) == 3:
                uli = xab[1].free_symbols.union(xab[2].free_symbols)
            # this integral can be done as long as there is no blocking
            # limit that has been undone. An undone limit is blocking if
            # it contains an integration variable that is in this limit's
            # upper or lower free symbols or vice versa
            if xab[0] in ulj or any(v[0] in uli for v in undone_limits):
                undone_limits.append(xab)
                ulj.update(uli)
                function = self.func(*([function] + [xab]))
                factored_function = function.factor()
                if not isinstance(factored_function, Integral):
                    function = factored_function
                continue

            # There are a number of tradeoffs in using the Meijer G method.
            # It can sometimes be a lot faster than other methods, and
            # sometimes slower. And there are certain types of integrals for
            # which it is more likely to work than others.
            # These heuristics are incorporated in deciding what integration
            # methods to try, in what order.
            # See the integrate() docstring for details.
            def try_meijerg(function, xab):
                ret = None
                if len(xab) == 3 and meijerg is not False:
                    x, a, b = xab
                    try:
                        res = meijerint_definite(function, x, a, b)
                    except NotImplementedError:
                        from diofant.integrals.meijerint import _debug
                        _debug('NotImplementedError from meijerint_definite')
                        res = None
                    if res is not None:
                        f, cond = res
                        if conds == 'piecewise':
                            ret = Piecewise((f, cond),
                                            (self.func(function,
                                                       (x, a, b)), True))
                        elif conds == 'separate':
                            if len(self.limits) != 1:
                                raise ValueError(
                                    'conds=separate not supported in '
                                    'multiple integrals')
                            ret = f, cond
                        else:
                            ret = f
                return ret

            meijerg1 = meijerg
            if len(xab) == 3 and xab[1].is_extended_real and xab[2].is_extended_real \
                and not function.is_Poly and \
                    (xab[1].has(oo, -oo) or xab[2].has(oo, -oo)):
                ret = try_meijerg(function, xab)
                if ret is not None:
                    function = ret
                    continue
                else:
                    meijerg1 = False

            # If the special meijerg code did not succeed in finding a definite
            # integral, then the code using meijerint_indefinite will not either
            # (it might find an antiderivative, but the answer is likely to be
            #  nonsensical).
            # Thus if we are requested to only use Meijer G-function methods,
            # we give up at this stage. Otherwise we just disable G-function
            # methods.
            if meijerg1 is False and meijerg is True:
                antideriv = None
            else:
                antideriv = self._eval_integral(function,
                                                xab[0],
                                                meijerg=meijerg1,
                                                risch=risch,
                                                conds=conds)
                if antideriv is None and meijerg1 is True:
                    ret = try_meijerg(function, xab)
                    if ret is not None:
                        function = ret
                        continue

            if antideriv is None:
                undone_limits.append(xab)
                function = self.func(*([function] + [xab])).factor()
                factored_function = function.factor()
                if not isinstance(factored_function, Integral):
                    function = factored_function
                continue
            else:
                if len(xab) == 1:
                    function = antideriv
                else:
                    if len(xab) == 3:
                        x, a, b = xab
                    elif len(xab) == 2:
                        x, b = xab
                        a = None
                    else:
                        raise NotImplementedError

                    if deep:
                        if isinstance(a, Basic):
                            a = a.doit(**hints)
                        if isinstance(b, Basic):
                            b = b.doit(**hints)

                    if antideriv.is_Poly:
                        gens = list(antideriv.gens)
                        gens.remove(x)

                        antideriv = antideriv.as_expr()

                        function = antideriv._eval_interval(x, a, b)
                        function = Poly(function, *gens)
                    elif (isinstance(antideriv, Add) and any(
                            isinstance(t, Integral) for t in antideriv.args)):
                        function = Add(*[
                            i._eval_interval(x, a, b)
                            for i in Add.make_args(antideriv)
                        ])
                    else:
                        try:
                            function = antideriv._eval_interval(x, a, b)
                        except NotImplementedError:
                            # This can happen if _eval_interval depends in a
                            # complicated way on limits that cannot be computed
                            undone_limits.append(xab)
                            function = self.func(*([function] + [xab]))
                            factored_function = function.factor()
                            if not isinstance(factored_function, Integral):
                                function = factored_function
        return function
示例#17
0
 def test_equality(r, alg="Greedy"):
     return r == Add(*[Rational(1, i) for i in egyptian_fraction(r, alg)])
示例#18
0
def add_terms(terms, prec, target_prec):
    """
    Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.

    Returns
    -------

    - None, None if there are no non-zero terms;
    - terms[0] if there is only 1 term;
    - scaled_zero if the sum of the terms produces a zero by cancellation
      e.g. mpfs representing 1 and -1 would produce a scaled zero which need
      special handling since they are not actually zero and they are purposely
      malformed to ensure that they can't be used in anything but accuracy
      calculations;
    - a tuple that is scaled to target_prec that corresponds to the
      sum of the terms.

    The returned mpf tuple will be normalized to target_prec; the input
    prec is used to define the working precision.

    XXX explain why this is needed and why one can't just loop using mpf_add
    """

    terms = [t for t in terms if not iszero(t)]
    if not terms:
        return None, None
    elif len(terms) == 1:
        return terms[0]

    # see if any argument is NaN or oo and thus warrants a special return
    special = []
    from diofant.core.numbers import Float
    for t in terms:
        arg = Float._new(t[0], 1)
        if arg is S.NaN or arg.is_infinite:
            special.append(arg)
    if special:
        from diofant.core.add import Add
        rv = evalf(Add(*special), prec + 4, {})
        return rv[0], rv[2]

    working_prec = 2 * prec
    sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF

    for x, accuracy in terms:
        sign, man, exp, bc = x
        if sign:
            man = -man
        absolute_error = max(absolute_error, bc + exp - accuracy)
        delta = exp - sum_exp
        if exp >= sum_exp:
            # x much larger than existing sum?
            # first: quick test
            if ((delta > working_prec)
                    and ((not sum_man)
                         or delta - bitcount(abs(sum_man)) > working_prec)):
                sum_man = man
                sum_exp = exp
            else:
                sum_man += (man << delta)
        else:
            delta = -delta
            # x much smaller than existing sum?
            if delta - bc > working_prec:
                if not sum_man:
                    sum_man, sum_exp = man, exp
            else:
                sum_man = (sum_man << delta) + man
                sum_exp = exp
    if not sum_man:
        return scaled_zero(absolute_error)
    if sum_man < 0:
        sum_sign = 1
        sum_man = -sum_man
    else:
        sum_sign = 0
    sum_bc = bitcount(sum_man)
    sum_accuracy = sum_exp + sum_bc - absolute_error
    r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
                  rnd), sum_accuracy
    return r