Exemple #1
0
def test_cluster_centroid_getitem():
    indices = list(range(len(data)))
    np.random.shuffle(indices)  # None trivial ordering
    advanced_indices = indices + [0, 1, 2, -1, -2, -3]

    # Test without specifying refdata in ClusterCentroid
    centroid = np.zeros(features_shape)
    cluster = ClusterCentroid(centroid)
    for idx in indices:
        cluster.assign(idx, (idx + 1) * features)

    # Test indexing
    for i in advanced_indices:
        assert_equal(cluster[i], indices[i])

    # Test advanced indexing
    assert_array_equal(cluster[advanced_indices],
                       [indices[i] for i in advanced_indices])

    # Test index out of bounds
    assert_raises(IndexError, cluster.__getitem__, len(cluster))
    assert_raises(IndexError, cluster.__getitem__, -len(cluster) - 1)

    # Test slicing and negative indexing
    assert_equal(cluster[-1], indices[-1])
    assert_array_equal(cluster[::2], indices[::2])
    assert_arrays_equal(cluster[::-1], indices[::-1])
    assert_arrays_equal(cluster[:-1], indices[:-1])
    assert_arrays_equal(cluster[1:], indices[1:])

    # Test with specifying refdata in ClusterCentroid
    cluster.refdata = data

    # Test indexing
    for i in advanced_indices:
        assert_array_equal(cluster[i], data[indices[i]])

    # Test advanced indexing
    assert_arrays_equal(cluster[advanced_indices],
                        [data[indices[i]] for i in advanced_indices])

    # Test index out of bounds
    assert_raises(IndexError, cluster.__getitem__, len(cluster))
    assert_raises(IndexError, cluster.__getitem__, -len(cluster) - 1)

    # Test slicing and negative indexing
    assert_array_equal(cluster[-1], data[indices[-1]])
    assert_arrays_equal(cluster[::2], [data[i] for i in indices[::2]])
    assert_arrays_equal(cluster[::-1], [data[i] for i in indices[::-1]])
    assert_arrays_equal(cluster[:-1], [data[i] for i in indices[:-1]])
    assert_arrays_equal(cluster[1:], [data[i] for i in indices[1:]])
def test_cluster_centroid_getitem():
    indices = list(range(len(data)))
    np.random.shuffle(indices)  # None trivial ordering
    advanced_indices = indices + [0, 1, 2, -1, -2, -3]

    # Test without specifying refdata in ClusterCentroid
    centroid = np.zeros(features_shape)
    cluster = ClusterCentroid(centroid)
    for idx in indices:
        cluster.assign(idx, (idx+1)*features)

    # Test indexing
    for i in advanced_indices:
        assert_equal(cluster[i], indices[i])

    # Test advanced indexing
    assert_array_equal(cluster[advanced_indices],
                       [indices[i] for i in advanced_indices])

    # Test index out of bounds
    assert_raises(IndexError, cluster.__getitem__, len(cluster))
    assert_raises(IndexError, cluster.__getitem__, -len(cluster)-1)

    # Test slicing and negative indexing
    assert_equal(cluster[-1], indices[-1])
    assert_array_equal(cluster[::2], indices[::2])
    assert_arrays_equal(cluster[::-1], indices[::-1])
    assert_arrays_equal(cluster[:-1], indices[:-1])
    assert_arrays_equal(cluster[1:], indices[1:])

    # Test with specifying refdata in ClusterCentroid
    cluster.refdata = data

    # Test indexing
    for i in advanced_indices:
        assert_array_equal(cluster[i], data[indices[i]])

    # Test advanced indexing
    assert_arrays_equal(cluster[advanced_indices],
                        [data[indices[i]] for i in advanced_indices])

    # Test index out of bounds
    assert_raises(IndexError, cluster.__getitem__, len(cluster))
    assert_raises(IndexError, cluster.__getitem__, -len(cluster)-1)

    # Test slicing and negative indexing
    assert_array_equal(cluster[-1], data[indices[-1]])
    assert_arrays_equal(cluster[::2], [data[i] for i in indices[::2]])
    assert_arrays_equal(cluster[::-1], [data[i] for i in indices[::-1]])
    assert_arrays_equal(cluster[:-1], [data[i] for i in indices[:-1]])
    assert_arrays_equal(cluster[1:], [data[i] for i in indices[1:]])
Exemple #3
0
def test_cluster_centroid_iter():
    indices = list(range(len(data)))
    np.random.shuffle(indices)  # None trivial ordering

    # Test without specifying refdata in ClusterCentroid
    centroid = np.zeros(features_shape)
    cluster = ClusterCentroid(centroid)
    for idx in indices:
        cluster.assign(idx, (idx + 1) * features)

    assert_array_equal(cluster.indices, indices)
    assert_array_equal(list(cluster), indices)

    # Test with specifying refdata in ClusterCentroid
    cluster.refdata = data
    assert_arrays_equal(list(cluster), [data[i] for i in indices])
Exemple #4
0
def test_cluster_centroid_iter():
    indices = list(range(len(data)))
    np.random.shuffle(indices)  # None trivial ordering

    # Test without specifying refdata in ClusterCentroid
    centroid = np.zeros(features_shape)
    cluster = ClusterCentroid(centroid)
    for idx in indices:
        cluster.assign(idx, (idx+1)*features)

    assert_array_equal(cluster.indices, indices)
    assert_array_equal(list(cluster), indices)

    # Test with specifying refdata in ClusterCentroid
    cluster.refdata = data
    assert_arrays_equal(list(cluster), [data[i] for i in indices])