def test_cluster_centroid_getitem(): indices = list(range(len(data))) np.random.shuffle(indices) # None trivial ordering advanced_indices = indices + [0, 1, 2, -1, -2, -3] # Test without specifying refdata in ClusterCentroid centroid = np.zeros(features_shape) cluster = ClusterCentroid(centroid) for idx in indices: cluster.assign(idx, (idx + 1) * features) # Test indexing for i in advanced_indices: assert_equal(cluster[i], indices[i]) # Test advanced indexing assert_array_equal(cluster[advanced_indices], [indices[i] for i in advanced_indices]) # Test index out of bounds assert_raises(IndexError, cluster.__getitem__, len(cluster)) assert_raises(IndexError, cluster.__getitem__, -len(cluster) - 1) # Test slicing and negative indexing assert_equal(cluster[-1], indices[-1]) assert_array_equal(cluster[::2], indices[::2]) assert_arrays_equal(cluster[::-1], indices[::-1]) assert_arrays_equal(cluster[:-1], indices[:-1]) assert_arrays_equal(cluster[1:], indices[1:]) # Test with specifying refdata in ClusterCentroid cluster.refdata = data # Test indexing for i in advanced_indices: assert_array_equal(cluster[i], data[indices[i]]) # Test advanced indexing assert_arrays_equal(cluster[advanced_indices], [data[indices[i]] for i in advanced_indices]) # Test index out of bounds assert_raises(IndexError, cluster.__getitem__, len(cluster)) assert_raises(IndexError, cluster.__getitem__, -len(cluster) - 1) # Test slicing and negative indexing assert_array_equal(cluster[-1], data[indices[-1]]) assert_arrays_equal(cluster[::2], [data[i] for i in indices[::2]]) assert_arrays_equal(cluster[::-1], [data[i] for i in indices[::-1]]) assert_arrays_equal(cluster[:-1], [data[i] for i in indices[:-1]]) assert_arrays_equal(cluster[1:], [data[i] for i in indices[1:]])
def test_cluster_centroid_getitem(): indices = list(range(len(data))) np.random.shuffle(indices) # None trivial ordering advanced_indices = indices + [0, 1, 2, -1, -2, -3] # Test without specifying refdata in ClusterCentroid centroid = np.zeros(features_shape) cluster = ClusterCentroid(centroid) for idx in indices: cluster.assign(idx, (idx+1)*features) # Test indexing for i in advanced_indices: assert_equal(cluster[i], indices[i]) # Test advanced indexing assert_array_equal(cluster[advanced_indices], [indices[i] for i in advanced_indices]) # Test index out of bounds assert_raises(IndexError, cluster.__getitem__, len(cluster)) assert_raises(IndexError, cluster.__getitem__, -len(cluster)-1) # Test slicing and negative indexing assert_equal(cluster[-1], indices[-1]) assert_array_equal(cluster[::2], indices[::2]) assert_arrays_equal(cluster[::-1], indices[::-1]) assert_arrays_equal(cluster[:-1], indices[:-1]) assert_arrays_equal(cluster[1:], indices[1:]) # Test with specifying refdata in ClusterCentroid cluster.refdata = data # Test indexing for i in advanced_indices: assert_array_equal(cluster[i], data[indices[i]]) # Test advanced indexing assert_arrays_equal(cluster[advanced_indices], [data[indices[i]] for i in advanced_indices]) # Test index out of bounds assert_raises(IndexError, cluster.__getitem__, len(cluster)) assert_raises(IndexError, cluster.__getitem__, -len(cluster)-1) # Test slicing and negative indexing assert_array_equal(cluster[-1], data[indices[-1]]) assert_arrays_equal(cluster[::2], [data[i] for i in indices[::2]]) assert_arrays_equal(cluster[::-1], [data[i] for i in indices[::-1]]) assert_arrays_equal(cluster[:-1], [data[i] for i in indices[:-1]]) assert_arrays_equal(cluster[1:], [data[i] for i in indices[1:]])
def test_cluster_centroid_iter(): indices = list(range(len(data))) np.random.shuffle(indices) # None trivial ordering # Test without specifying refdata in ClusterCentroid centroid = np.zeros(features_shape) cluster = ClusterCentroid(centroid) for idx in indices: cluster.assign(idx, (idx + 1) * features) assert_array_equal(cluster.indices, indices) assert_array_equal(list(cluster), indices) # Test with specifying refdata in ClusterCentroid cluster.refdata = data assert_arrays_equal(list(cluster), [data[i] for i in indices])
def test_cluster_centroid_iter(): indices = list(range(len(data))) np.random.shuffle(indices) # None trivial ordering # Test without specifying refdata in ClusterCentroid centroid = np.zeros(features_shape) cluster = ClusterCentroid(centroid) for idx in indices: cluster.assign(idx, (idx+1)*features) assert_array_equal(cluster.indices, indices) assert_array_equal(list(cluster), indices) # Test with specifying refdata in ClusterCentroid cluster.refdata = data assert_arrays_equal(list(cluster), [data[i] for i in indices])