Exemple #1
0
def fit_emp_prior(id, param_type):
    """ Fit empirical prior of specified type for specified model

    Parameters
    ----------
    id : int
      The model id number for the job to fit
    param_type : str, one of incidence, prevalence, remission, excess-mortality
      The disease parameter to generate empirical priors for

    Example
    -------
    >>> import fit_emp_prior
    >>> fit_emp_prior.fit_emp_prior(2552, 'incidence')
    """
    #dismod3.log_job_status(id, 'empirical_priors', param_type, 'Running')

    # load disease model
    dm = dismod3.load_disease_model(id)
    #dm.data = []  # remove all data to speed up computation, for test

    import dismod3.neg_binom_model as model
    dir = dismod3.settings.JOB_WORKING_DIR % id
    model.fit_emp_prior(dm, param_type, dbname='%s/empirical_priors/pickle/dm-%d-emp_prior-%s.pickle' % (dir, id, param_type))

    # generate empirical prior plots
    from pylab import subplot
    for sex in dismod3.settings.gbd_sexes:
        for year in dismod3.settings.gbd_years:
            keys = dismod3.utils.gbd_keys(region_list=['all'], year_list=[year], sex_list=[sex], type_list=[param_type])
            dismod3.tile_plot_disease_model(dm, keys, defaults={})
            dm.savefig('dm-%d-emp_prior-%s-%s-%s.png' % (id, param_type, sex, year))

    # TODO: put this in a separate script, which runs after all empirical priors are computed
    for effect in ['alpha', 'beta', 'gamma', 'delta']:
        dismod3.plotting.plot_empirical_prior_effects([dm], effect)
        dm.savefig('dm-%d-emp-prior-%s-%s.png' % (id, param_type, effect))

    # summarize fit quality graphically, as well as parameter posteriors
    k0 = keys[0]
    dm.vars = {k0: dm.vars}   # hack to make posterior predictions plot
    dismod3.plotting.plot_posterior_predicted_checks(dm, k0)
    dm.savefig('dm-%d-emp-prior-check-%s.png' % (dm.id, param_type))
    dm.vars = dm.vars[k0]   # undo hack to make posterior predictions plot
    
    # save results (do this last, because it removes things from the disease model that plotting function, etc, might need
    dm.save('dm-%d-prior-%s.json' % (id, param_type))
    dismod3.try_posting_disease_model(dm, ntries=5)

    #dismod3.log_job_status(id, 'empirical_priors', param_type, 'Completed')
    return dm
Exemple #2
0
def upload_fits(id):
    """ Send results of cluster fits to dismod server

    Parameters
    ----------
    id : int
      The model id number

    Example
    -------
    >>> import fit_emp_prior
    >>> fit_emp_prior.fit_emp_prior(2552, 'incidence')
    >>> import upload_fits
    >>> upload_fits.upload_fits(2552)
    """
    # load disease model
    dm = dismod3.load_disease_model(id)  # this merges together results from all fits
    dismod3.try_posting_disease_model(dm, ntries=5)
Exemple #3
0
                for age in age_mesh:
                    x.append(age)
                    y.append(measure_out.model[index_dict[(dm4_type, year, age)]])

                key = dismod3.gbd_key_for(dm3_type, r, year, sex)
                est = dismod3.utils.interpolate(x, y, dm.get_estimate_age_mesh())
                dm.set_truth(key, est)

                dismod3.tile_plot_disease_model(dm, [key], defaults={})
                try:
                    pl.savefig(dismod3.settings.JOB_WORKING_DIR % id + '/dm-%d-posterior-%s-%s-%s.png' % (id, dm3_type, sex, year))   # TODO: refactor naming into its own function
                except IOError, e:
                    print 'Warning: could not create png.  Maybe it exists already?\n%s' % e

    # save results (do this last, because it removes things from the disease model that plotting function, etc, might need
    dismod3.try_posting_disease_model(dm, ntries=5)

    print
    print '********************'
    print 'computation complete'
    print '********************'

def main():
    import optparse

    usage = 'usage: %prog [options] disease_model_id'
    parser = optparse.OptionParser(usage)

    (options, args) = parser.parse_args()

    if len(args) != 1:
Exemple #4
0
    for effect in ['alpha', 'beta', 'gamma', 'delta']:
        try:
            dismod3.plotting.plot_empirical_prior_effects([dm], effect)
            dm.savefig('dm-%d-emp-prior-%s.png' % (id, effect))
        except Exception:
            print 'failed to plot %s' % effect

    # save table output
    try:
        dismod3.table.make_tables(dm)
    except Exception, e:
        print 'Failed to make table'
        print e

    # send to website
    dismod3.try_posting_disease_model(dm, ntries=5)

    # record that job is done
    o = '%s/empirical_priors/stdout/%d_running.txt' % (dir, id)
    f = open(o, 'a')
    import time
    f.write('\n**** JOB DONE AT %s' % time.strftime('%c'))
    f.close()


def merge_data_csvs(id):

    df = pandas.DataFrame()

    dir = dismod3.settings.JOB_WORKING_DIR % id
    #print dir