def getSpectData(datapath, run, event_limit, bin_size=10, trigger_type=1, group_fft=False): ''' This function obtains the data for a spectrogram. Parameters ---------- datapath : str The path to the data where the runs are stored. This is the same as the input to the reader class. run : int The run number to be loaded. event_limit : int This limits the number of events to load. Loads from beginning of run to end, so reducing this speeds up the calculation by cutting off the later portions of the run. bin_size : int This is the number of seconds to include in each time slice of the spectrogram. The average spectra will be computed per bin. Default is 10. trigger_type : int This is the trigger type of events included in the spectrogram. The default is 1. group_fft : bool This enables the fft calculation to be performed simultaneously for all events, rather than per waveform as they are loaded in. This may be faster but requires more memory. Default is False. Returns ------- reader : examples.beacon_data_reader.Reader This is the reader for the selected run. freqs : numpy.ndarray of floats This is the list of frequencies for corresponding to the y-axis of the spectrogram data. spectra_dbish_binned : dict This is the data corresponding to the spectrogram. Each entry in the dictionary contains the spectrogram data for a particular channel. This are returned in dB-like units. I.e. they are calculated as if the waveforms were in volts, but in reality the waveforms are in adu. Some there is some offset from these values to true dB units. ''' reader = Reader(datapath, run) N = reader.N() if event_limit == None else min(reader.N(), abs(event_limit)) print('\nReader:') d = tools.interpret.getReaderDict(reader) pprint(d) print('\nHeader:') h = tools.interpret.getHeaderDict(reader) pprint(h) print('\nStatus:') s = tools.interpret.getStatusDict(reader) pprint(s) if reader.N() == 0: print('No events found in the selected run.') else: def rfftWrapper(channel, waveform_times, *args, **kwargs): spec = numpy.fft.rfft(*args, **kwargs) real_power_multiplier = 2.0 * numpy.ones_like( spec ) #The factor of 2 because rfft lost half of the power except for dc and Nyquist bins (handled below). if len(numpy.shape(spec)) != 1: real_power_multiplier[:, [0, -1]] = 1.0 else: real_power_multiplier[[0, -1]] = 1.0 spec_dbish = 10.0 * numpy.log10( real_power_multiplier * spec * numpy.conj(spec) / len(waveform_times) ) #10 because doing power in log. Dividing by N to match monutau. return channel, spec_dbish waveform_times = reader.t() freq_step = 1.0 / (len(waveform_times) * (numpy.diff(waveform_times)[0] * 1e-9)) freqs = numpy.arange(len(waveform_times) // 2 + 1) * freq_step freq_nyquist = 1 / (2.0 * numpy.diff(waveform_times)[0] * 1e-9) if group_fft == True: waveforms = {} spectra_dbish = {} readout_times = [] for channel in range(8): if group_fft == True: waveforms['ch%i' % channel] = numpy.zeros( (N, reader.header().buffer_length), dtype=int) spectra_dbish['ch%i' % channel] = numpy.zeros( (N, reader.header().buffer_length // 2 + 1), dtype=float) print('') for event_index, eventid in enumerate( range(N if event_limit == None else event_limit)): sys.stdout.write('\r(%i/%i)' % (eventid + 1, N)) sys.stdout.flush() reader.setEntry(eventid) readout_times.append(getattr(reader.header(), 'readout_time')) for channel in range(8): if group_fft == True: waveforms['ch%i' % channel][event_index] = reader.wf(channel) else: spectra_dbish['ch%i' % channel][event_index] = rfftWrapper( 'ch%i' % channel, waveform_times, reader.wf(channel))[1] if group_fft == True: with concurrent.futures.ThreadPoolExecutor( max_workers=cpu_count()) as executor: thread_results = [] for channel in range(8): thread_results.append( executor.submit(rfftWrapper, 'ch%i' % channel, waveform_times, waveforms['ch%i' % channel])) print('Weaving threads') sys.stdout.flush() for index, future in enumerate( concurrent.futures.as_completed(thread_results)): spectra_dbish[future.result()[0]] = future.result()[1] print('%i/8 Channel FFTs Completed' % (index + 1)) bin_edges = numpy.arange(min(readout_times), max(readout_times) + bin_size, bin_size) bin_L_2d = numpy.tile(bin_edges[:-1], (len(readout_times), 1)) bin_R_2d = numpy.tile( numpy.roll(bin_edges, -1)[:-1], (len(readout_times), 1)) readout_times_2d = numpy.tile(readout_times, (len(bin_edges) - 1, 1)).T cut_2d = numpy.logical_and(readout_times_2d >= bin_L_2d, readout_times_2d < bin_R_2d).T del bin_L_2d del bin_R_2d del readout_times_2d spectra_dbish_binned = {} for channel in range(8): spectra_dbish_binned['ch%i' % channel] = numpy.zeros( (len(freqs), len(bin_edges) - 1)) for index, cut in enumerate(cut_2d): spectra_dbish_binned['ch%i' % channel][:, index] = numpy.mean( spectra_dbish['ch%i' % channel][cut], axis=0) spectra_dbish_binned['ch%i' % channel] = numpy.flipud( numpy.ma.array(spectra_dbish_binned['ch%i' % channel], mask=numpy.isnan( spectra_dbish_binned['ch%i' % channel]))) return reader, freqs, spectra_dbish_binned
for day_label in list(clean_days.keys()): flagged_runs[day_label] = [] flagged_runs_cfg = {} for day_label in list(clean_days.keys()): flagged_runs_cfg[day_label] = [] min_ts = [] max_ts = [] run_ids = [] print('') for run_index,run_label in enumerate(run_labels): if 'run' in run_label: run = int(run_label.split('run')[-1]) reader = Reader(datapath,run) if reader.N() == 0: continue sys.stdout.write('\r%i/%i'%(run_index+1,len(run_labels))) sys.stdout.flush() min_t = reader.head_tree.GetMinimum('readout_time')#utc.localize(datetime.fromtimestamp(reader.head_tree.GetMinimum('readout_time'))) max_t = reader.head_tree.GetMaximum('readout_time')#utc.localize(datetime.fromtimestamp(reader.head_tree.GetMaximum('readout_time'))) min_ts.append(min_t) max_ts.append(max_t) run_ids.append(run) for day_label in list(clean_days.keys()): cfg = numpy.array([],dtype=int) #Leading end in window. if numpy.any(numpy.logical_and(min_t > clean_days[day_label]['starts'],min_t < clean_days[day_label]['ends'])):
crit_freq_high_pass_MHz = 65 high_pass_filter_order = 12 apply_phase_response = True hilbert = False #Load antenna position information from the info.py script origin = info.loadAntennaZeroLocation() #Assuming default_deploy antennas_physical, antennas_phase_hpol, antennas_phase_vpol = info.loadAntennaLocationsENU( ) #Assuming default_deploy #Create a Reader object for the specific run. reader = Reader(datapath, run) print('The run associated with this reader is:') print(reader.run) print('This run has %i events' % (reader.N())) #Create a TimeDelayCalculator object for the specified run. Note that if the above parameters haven't been change tdc_raw = TimeDelayCalculator(reader, final_corr_length=final_corr_length, crit_freq_low_pass_MHz=None, crit_freq_high_pass_MHz=None, low_pass_filter_order=None, high_pass_filter_order=None, plot_filters=False, apply_phase_response=False) #Plot raw event tdc_raw.plotEvent(eventids[0], channels=[0, 1, 2, 3, 4, 5, 6, 7], apply_filter=False, hilbert=False,
printCredit() # If your data is elsewhere, pass it as an argument datapath = sys.argv[1] if len(sys.argv) > 1 else os.environ['BEACON_DATA'] run = 1509 #Selects which run to examine eventids = numpy.array( [2401]) #numpy.array([90652,90674,90718,90766,90792,91019,91310]) for eventid in eventids: #eventid = None#numpy.array([1,2,3]) #If None then a random event id is selected. Can be array of eventids as well. reader = Reader(datapath, run) verbose = True # this is a random event if type(eventid) == None: eventid = numpy.array([numpy.random.randint(reader.N())]) elif type(eventid) == int: eventid = numpy.array([eventid]) elif type(eventid) == list: eventid = numpy.array(eventid) elif type(eventid) == numpy.ndarray: pass else: print('event id not set in valid way, setting to random') eventid = numpy.array([numpy.random.randint(reader.N())]) eventid = [2401] for eid in eventid: reader.setEntry(eid) ## dump the headers and status, just to show they're there
'all' ) #Uncomment this if you want figures to be closed before this is run (helps if running multiple times in a row to avoid plot congestion). ''' Here we pick a run, create a reader, get the eventids, get which eventids correspond to which trigger type, then plot 1 event from each trigger type. ''' if True: plot_N_per_type = 2 #The number of events to plot her trigger type. Meant to demonstrate what looping over events might look like. #Get run and events you want to look at. run = 1650 #Create a Reader object for the specific run. reader = Reader(datapath, run) print('The run associated with this reader is:') print(reader.run) print('This run has %i events' % (reader.N())) eventids = numpy.arange(reader.N()) trigger_type = loadTriggerTypes(reader) times = reader.t() #The times of a waveform in ns. Not upsampled. for trig_type in [1, 2, 3]: print('Plotting %i eventids of trig type %i' % (plot_N_per_type, trig_type)) trig_eventids = eventids[ trigger_type == trig_type] #All eventids of this trig type trig_eventids = numpy.sort( numpy.random.choice(trig_eventids, 2) ) #Randomly choosing a subset and sorting for faster loading of events for eventid in trig_eventids: