if __name__ == '__main__': inputTest = pd.read_csv('{}.csv'.format( str(input('Enter Feature File name:\t'))), header=None) outputTest = pd.read_csv('{}.csv'.format( str(input('Enter Class File name:\t'))), header=None) outputTest.columns = ['Class'] inputTest = inputTest.T inputTest = DropIfMaxNaN(inputTest) inputTest = handlingNaN(inputTest) Test_FeatureMatrix = pd.concat([ Features.Deviation(inputTest, 'N/A'), Features.meanRange(inputTest, 'N/A')[['MeanRange']], Features.Range(inputTest, 'N/A')[['HighRange', 'LowRange']], Features.FFT(inputTest, 'N/A')[['varFFT', 'sdFFT', 'meanFFT']], Features.Quantile(inputTest, 'N/A')['Quantile'], ], axis=1) if int(input('Pass From PCA? 1: YES, 0: NO:\t')) == 1: columns = TopFeatures(Test_FeatureMatrix, len(Test_FeatureMatrix.columns) - 1) else: columns = list(Test_FeatureMatrix.columns) columns.remove('Class') Test_DF = Test_FeatureMatrix[columns]
meal[i] = handlingNaN(meal[i]) for j in meal[i].columns: meal[i][j] = list(meal[i][j])[::-1] meal[i].columns = [i for i in range(len(meal[i].columns))] noMeal[i] = DropIfMaxNaN(noMeal[i]) meal[i] = handlingNaN(noMeal[i]) for j in noMeal[i].columns: noMeal[i][j] = list(noMeal[i][j])[::-1] noMeal[i].columns = [i for i in range(len(noMeal[i].columns))] DeviationFeature = pd.DataFrame(columns=[ 'inRangeCount', 'LowCount', 'HighCount', 'LowMean', 'HighMean', 'Class' ]) for i in range(numFiles): DeviationFeature = DeviationFeature.append(Features.Deviation( meal[i], 'Meal'), ignore_index=True) for i in range(numFiles): DeviationFeature = DeviationFeature.append(Features.Deviation( noMeal[i], 'NoMeal'), ignore_index=True) mean_range_feature = pd.DataFrame(columns=['MeanRange', 'Class']) for i in range(numFiles): mean_range_feature = mean_range_feature.append(Features.meanRange( meal[i], 'Meal'), ignore_index=True) for i in range(numFiles): mean_range_feature = mean_range_feature.append(Features.meanRange( noMeal[i], 'NoMeal'), ignore_index=True)