from decision_tree import DecisionTree import os feature_matrix = [ 'Glucose_max', 'Glucose_min', 'Glucose_variance', 'velocity_max', 'velocity_min', 'velocity_variance', 'rms_max', 'rms_min', 'rms_variance' ] target = ['target'] for i in range(1, 6): meal_data = Preprocess( f'D:\\python projects\\CSE572\\project2\\mealData{i}.csv') meal_data_df = meal_data.get_dataframe() meal_feature = Features(meal_data_df) temp1_matrix = meal_feature.features_extraction() feature_matrix = np.row_stack((feature_matrix, temp1_matrix)) # print(len(temp1_matrix)) target.extend([1] * len(temp1_matrix)) nomeal_data = Preprocess( f'D:\\python projects\\CSE572\\project2\\Nomeal{i}.csv') nomeal_data_df = nomeal_data.get_dataframe() nomeal_feature = Features(nomeal_data_df) temp2_matrix = nomeal_feature.features_extraction() feature_matrix = np.row_stack((feature_matrix, temp2_matrix)) target.extend([0] * len(temp2_matrix)) feature_matrix = np.array(feature_matrix) target = np.array([target]) new_feature_matrix = np.concatenate((feature_matrix, target.T), axis=1)
from preprocess import Preprocess from features import Features import pandas as pd cgm_series_lunch = Preprocess( 'D:\Desktop\ASU\CSE572\DataFolder\CGMSeriesLunchPat1.csv') time_series_lunch = Preprocess( 'D:\Desktop\ASU\CSE572\DataFolder\CGMDatenumLunchPat1.csv') cgm_series_lunch1 = cgm_series_lunch.get_dataframe() time_series_lunch1 = time_series_lunch.get_dataframe() # print(cgm_series_lunch1) # print(time_series_lunch1) feature = Features(cgm_series_lunch1, time_series_lunch1) feature.features_extraction() # feature.save_to_csv() final_pca = pd.DataFrame(feature.pca_decomposition()) final_pca.to_csv('final_pca.csv', index=False) feature.plot_time_series()