Exemple #1
0
def test_sim_init_m():
    mesh = CuboidMesh(nx=3, ny=4, nz=5)
    sim = Sim(mesh)
    sim.set_m((0, 1, 0))
    sim.spin.shape = (-1, 3)
    spin_y = sim.spin[:, 1]
    assert(spin_y.any() == 1)
def test_sim_init_m():
    mesh = CuboidMesh(nx=3, ny=4, nz=5)
    sim = Sim(mesh)
    sim.set_m((0, 1, 0))
    sim.spin.shape = (-1, 3)
    spin_y = sim.spin[:, 1]
    assert (spin_y.any() == 1)
Exemple #3
0
def compute_field():

    mesh = CuboidMesh(nx=1,
                      ny=1,
                      nz=1,
                      dx=2.0,
                      dy=2.0,
                      dz=2.0,
                      unit_length=1e-9,
                      periodicity=(True, True, False))

    sim = Sim(mesh, name='relax')

    sim.driver.set_tols(rtol=1e-10, atol=1e-14)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m((0, 0, 1))
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag(pbc_2d=True)
    sim.add(demag)
    field = demag.compute_field()
    print(field)

    np.save('m0.npy', sim.spin)
Exemple #4
0
def relax_neb(k, maxst, simname, init_im, interp, save_every=10000,
              coordinates='Cartesian'):
    """
    Execute a simulation with the NEB function of the FIDIMAG code, for an
    elongated particle (long cylinder)

    The simulations are made for a specific spring constant 'k' (a float),
    number of images 'init_im', interpolations between images 'interp'
    (an array) and a maximum of 'maxst' steps.
    'simname' is the name of the simulation, to distinguish the
    output files.

    --> vtks and npys are saved in files starting with the 'simname' string

    """

    # Prepare simulation
    # We define the cylinder with the Magnetisation function
    sim = Sim(mesh)
    sim.Ms = two_part

    # sim.add(UniformExchange(A=A))

    # Uniaxial anisotropy along x-axis
    sim.add(UniaxialAnisotropy(Kx, axis=(1, 0, 0)))

    # Define many initial states close to one extreme. We want to check
    # if the images in the last step, are placed mostly in equally positions
    init_images = init_im

    # Number of images between each state specified before (here we need only
    # two, one for the states between the initial and intermediate state
    # and another one for the images between the intermediate and final
    # states). Thus, the number of interpolations must always be
    # equal to 'the number of initial states specified', minus one.
    interpolations = interp

    if coordinates == 'Spherical':
        neb = NEBM_Spherical(sim,
                             init_images,
                             interpolations=interpolations,
                             spring_constant=k,
                             name=simname
                             )
    if coordinates == 'Geodesic':
        neb = NEBM_Geodesic(sim,
                            init_images,
                            interpolations=interpolations,
                            spring_constant=k,
                            name=simname,
                            integrator='sundials'
                            )

    neb.relax(max_iterations=2000,
              save_vtks_every=save_every,
              save_npys_every=save_every,
              stopping_dYdt=1e-4,
              dt=1e-6
              )
def setup_simulation(mesh, m0, simulation_name, integrator="sundials", use_jac=False):
    sim = Sim(mesh, name=simulation_name, integrator=integrator, use_jac)
    sim.set_m(m0)
    sim.Ms = Ms
    sim.alpha = alpha
    sim.gamma = gamma
    sim.add(UniformExchange(A))
    sim.add(Demag())
    return sim
Exemple #6
0
def excite_system(mesh):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='fidimag', driver='llg_stt')

    sim.driver.set_tols(rtol=1e-8, atol=1e-8)
    sim.driver.alpha = 0.1
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.0e5
    sim.driver.p = 1

    sim.set_m(np.load('npys/m0_cpu.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    sim.add(Demag())

    sim.driver.jx = -1e12
    sim.driver.beta = 0.05

    ts = np.linspace(0, 8e-9, 801)

    for t in ts:
        print('time', t)
        sim.driver.run_until(t)
def compute_field():

    mesh = CuboidMesh(nx=1, ny=1, nz=1, dx=2.0, dy=2.0, dz=2.0, unit_length=1e-9, periodicity=(True, True, False))

    sim = Sim(mesh, name='relax')

    sim.driver.set_tols(rtol=1e-10, atol=1e-14)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m((0,0,1))
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag(pbc_2d=True)
    sim.add(demag)
    field=demag.compute_field()
    print(field)

    np.save('m0.npy', sim.spin)
Exemple #8
0
def test_zeeman_energy():

    mu0 = 4 * np.pi * 1e-7
    # A system of 8 cells ( not using nm units)
    mesh = CuboidMesh(dx=2, dy=2, dz=2,
                      nx=2, ny=2, nz=2
                      )

    sim = Sim(mesh)
    Ms = 1e5
    sim.set_Ms(Ms)

    sim.set_m((0, 0, 1))

    H = 0.1 / mu0
    zeeman = Zeeman((0, 0, H))
    sim.add(zeeman)

    field = zeeman.compute_field()
    zf = sim.get_interaction('Zeeman')

    #                             ->    ->
    # Expected energy: Int ( -mu0 M  *  H  )  dV
    # Since we have 8 cells with the same M, we just sum their contrib 
    exp_energy = 8 * (-mu0 * H * Ms * mesh.dx * mesh.dy * mesh.dz)

    assert np.abs(zf.compute_energy() - exp_energy) < 1e-10
def setup_domain_wall_cobalt(node_count=NODE_COUNT, A=A_Co, Ms=Ms_Co, K1=K1_Co, length=LENGTH, do_precession=True, unit_length=UNIT_LENGTH):
    a = length / node_count  # cell size
    mesh = CuboidMesh(dx=a, dy=a, dz=a, nx=node_count, ny=1, nz=1, unit_length=unit_length)
    sim = Sim(mesh, "dw_cobalt")
    sim.Ms = Ms
    sim.set_m(lambda r: initial_m(r, length))
    sim.do_precession = do_precession
    sim.add(UniformExchange(A))
    sim.add(UniaxialAnisotropy(K1, (0, 0, 1)))
    sim.pins = lambda r: 1 if (r[0] < a or r[0] > LENGTH - a) else 0
    return sim
Exemple #10
0
def test_sim_init_m_fun():
    mesh = CuboidMesh(nx=3, ny=4, nz=5)
    sim = Sim(mesh)
    sim.set_m(init_m, normalise=False)

    print sim.spin.reshape(-1, 3).shape
    print sim.mesh.index(1, 2, 3)

    assert(sim.spin_at(1, 2, 3)[0] == 1)
    assert(sim.spin_at(1, 2, 3)[1] == 2)
    assert(sim.spin_at(1, 2, 3)[2] == 3)
def elongated_part_sim():
    sim = Sim(mesh)
    sim.Ms = lambda r: cylinder(r, centre, 8)
    sim.add(UniformExchange(A=A))
    sim.add(UniaxialAnisotropy(Kx, axis=(0, 1, 0)))  # Anisotropy along y
    sim.add(Demag())

    return sim
Exemple #12
0
def test_init():
    """
    This tests (mx, my, mx) for the first 2 spins
    """
    mesh = CuboidMesh(nx=100, ny=1, nz=1)
    sim = Sim(mesh)
    sim.set_m(init_m)

    expected = np.array([0, 0, 1,
                         0, np.sin(0.1), np.cos(0.1)])

    assert max(abs(sim.spin[:6] - expected)) < 1e-15
Exemple #13
0
def test_with_oommf_spatial_Ms(A=1e-11):
    def spatial_Ms(pos):
        x, y = pos[0], pos[1]

        if x**2 + y**2 < 5**2:
            return 2e4
        else:
            return 0

    init_m0 = (
        r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] ' +
        r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] ' + r'0 ' + r'] ')

    init_Ms = """

    if { ($x * $x + $y * $y) < 5e-9 * 5e-9 } {
        return 2e4
    } else {
        return 0
    }

    """

    mesh = CuboidMesh(nx=12, ny=10, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = spatial_Ms

    def init_m(pos):
        x, y, z = pos
        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    field = exch.compute_field()
    field_oommf = compute_exch_field(mesh,
                                     init_m0=init_m0,
                                     A=A,
                                     spatial_Ms=init_Ms)
    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-12

    field = demag.compute_field()
    field_oommf = compute_demag_field(mesh,
                                      spatial_Ms=init_Ms,
                                      init_m0=init_m0)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-11
def test_zeeman():

    mesh = CuboidMesh(nx=5, ny=2, nz=1)

    sim = Sim(mesh)
    sim.set_m((1, 0, 0))

    zeeman = Zeeman(varying_field)
    sim.add(zeeman)

    field = zeeman.compute_field()

    assert field[6] == 1.2 * (2 + 0.5)
    assert field[7] == 2.3 * 0.5
Exemple #15
0
def run(integrator, jacobian):
    name = "sim_" + integrator
    if integrator == "sundials":
        name += "_J1" if jacobian else "_J0"
    sim = Sim(mesh, name, integrator, use_jac=jacobian)
    sim.Ms = 0.86e6
    sim.driver.alpha = 0.5
    sim.set_m((1, 0, 1))
    sim.add(UniformExchange(A=13e-12))
    sim.add(Demag())

    ts = np.linspace(0, 3e-10, 61)
    for t in ts:
        sim.run_until(t)
Exemple #16
0
def test_sim_single_spin(do_plot=False):

    mesh = CuboidMesh(nx=1, ny=1, nz=1)

    sim = Sim(mesh, name='spin')

    alpha = 0.1
    gamma = 2.21e5
    sim.alpha = alpha
    sim.driver.gamma = gamma
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-9, 101)

    mx = []
    my = []
    mz = []
    real_ts = []
    for t in ts:
        sim.driver.run_until(t)
        real_ts.append(sim.driver.t)
        print(sim.driver.t, abs(sim.spin_length()[0] - 1))
        mx.append(sim.spin[0])
        my.append(sim.spin[1])
        mz.append(sim.spin[2])

    mz = np.array(mz)
    # print mz
    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    print(sim.driver.stat())

    if do_plot:
        ts_ns = np.array(real_ts) * 1e9
        plt.plot(ts_ns, mx, ".", label="mx", color='DarkGreen')
        plt.plot(ts_ns, my, ".", label="my", color='darkslateblue')
        plt.plot(ts_ns, mz, ".", label="mz", color='m')
        plt.plot(ts_ns, a_mx, "--", label="analytical", color='b')
        plt.plot(ts_ns, a_my, "--",  color='b')
        plt.plot(ts_ns, a_mz, "--",  color='b')
        plt.xlabel("time (ns)")
        plt.ylabel("m")
        plt.title("integrating a macrospin")
        plt.legend()
        plt.savefig("single_spin.pdf")

    print(("Max Deviation = {0}".format(
        np.max(np.abs(mz - a_mz)))))

    assert np.max(np.abs(mz - a_mz)) < 5e-7
def elongated_part_sim():
    sim = Sim(mesh)
    sim.Ms = lambda r: cylinder(r, centre, 8)
    sim.add(UniformExchange(A=A))
    sim.add(UniaxialAnisotropy(Kx, axis=(0, 1, 0)))  # Anisotropy along y
    sim.add(Demag())

    return sim
Exemple #18
0
def test_sim_pin():
    mesh = CuboidMesh(nx=3, ny=2, nz=1)
    sim = Sim(mesh)
    sim.set_m((0, 0.8, 0.6))
    sim.alpha = 0.1
    sim.gamma = 1.0
    sim.pins = pin_fun

    anis = UniaxialAnisotropy(Ku=1, axis=[0, 0, 1], name='Dx')
    sim.add(anis)

    sim.run_until(1.0)
    print sim.spin
    assert sim.spin[0] == 0
    assert sim.spin[2] != 0
Exemple #19
0
def create_simulation(mesh):

    sim = Sim(mesh)
    sim.Ms = 8.6e5

    sim.set_m((1, 0, 0))
    sim.add(UniformExchange(A=1.3e-11))
    # sim.add(Demag())
    #sim.add(UniaxialAnisotropy(Kx, (1, 0, 0), name='Kx'))
    anis = UniaxialAnisotropy(1e5, axis=(1, 0, 0))
    sim.add(anis)

    return sim
def relax_neb(k, maxst, simname, init_im, interp, save_every=10000):
    """
    Execute a simulation with the NEB function of the FIDIMAG code, for an
    elongated particle (long cylinder)

    The simulations are made for a specific spring constant 'k' (a float),
    number of images 'init_im', interpolations between images 'interp'
    (an array) and a maximum of 'maxst' steps.
    'simname' is the name of the simulation, to distinguish the
    output files.

    --> vtks and npys are saved in files starting with the 'simname' string

    """

    # Prepare simulation
    # We define the cylinder with the Magnetisation function
    sim = Sim(mesh)
    sim.Ms = two_part

    #sim.add(UniformExchange(A=A))

    # Uniaxial anisotropy along x-axis
    sim.add(UniaxialAnisotropy(Kx, axis=(1, 0, 0)))

    # Define many initial states close to one extreme. We want to check
    # if the images in the last step, are placed mostly in equally positions
    init_images = init_im

    # Number of images between each state specified before (here we need only
    # two, one for the states between the initial and intermediate state
    # and another one for the images between the intermediate and final
    # states). Thus, the number of interpolations must always be
    # equal to 'the number of initial states specified', minus one.
    interpolations = interp

    neb = NEB_Sundials(sim,
                       init_images,
                       interpolations=interpolations,
                       spring=k,
                       name=simname)

    neb.relax(max_steps=maxst,
              save_vtk_steps=save_every,
              save_npy_steps=save_every,
              stopping_dmdt=1e-2)
Exemple #21
0
def test_with_oommf_spatial_Ms(A=1e-11):

    def spatial_Ms(pos):
        x, y = pos[0], pos[1]

        if x ** 2 + y ** 2 < 5 ** 2:
            return 2e4
        else:
            return 0

    init_m0 = (r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] '
               + r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] '
               + r'0 '
               + r'] ')

    init_Ms = """

    if { ($x * $x + $y * $y) < 5e-9 * 5e-9 } {
        return 2e4
    } else {
        return 0
    }

    """

    mesh = CuboidMesh(nx=12, ny=10, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = spatial_Ms

    def init_m(pos):
        x, y, z = pos
        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    field = exch.compute_field()
    field_oommf = compute_exch_field(
        mesh, init_m0=init_m0, A=A, spatial_Ms=init_Ms)
    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-12

    field = demag.compute_field()
    field_oommf = compute_demag_field(
        mesh, spatial_Ms=init_Ms, init_m0=init_m0)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-11
Exemple #22
0
def test_dmi_field_oommf(D=4.1e-3, Ms=2.6e5):

    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    dmi = DMI(D=D, type='interfacial')
    sim.add(dmi)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = dmi.compute_field()

    init_m0 = """
        return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
        """
    # TODO: check the sign of DMI in OOMMF.
    #field_oommf = compute_dmi_field(mesh, Ms=Ms, init_m0=init_m0, D=-D)
    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'omfs','test_dmi_field_oommf.ohf')
    ovf = OMF2(omf_file)
    field_oommf = ovf.get_all_mags()

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-12
Exemple #23
0
def test_exch_field_oommf(A=1e-11, Ms=2.6e5):

    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = exch.compute_field()

    init_m0 = """
    return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
    """
    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                            'omfs',
                            'test_exch_field_oommf.ohf'
                            )
    ovf = OMF2(omf_file)
    field_oommf = ovf.get_all_mags()

    #field_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)
    assert max([mx0, mx1, mx2]) < 1e-12
Exemple #24
0
def test_exch_field_oommf(A=1e-11, Ms=2.6e5):
    """
    Compare the exchange field from Fidimag with an equivalent
    OOMMF simulation. OOMMF field data is taken from an OVF file.
    """
    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    def init_m(pos):
        x, y, z = pos
        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = exch.compute_field()

    # An equivalent initial magnetisation for OOMMF
    # The spatial variables are rescale since they are in nm
    init_m0 = (
        r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] ' +
        r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] ' + r'0 ' + r'] ')

    field_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    # Test if the maximum relative errors between both simulations
    # is small enough, for every field component
    assert max([mx0, mx1, mx2]) < 1e-12
def test_sim_single_spin(do_plot=False):

    mesh = CuboidMesh(nx=80, ny=3, nz=3)

    sim = Sim(mesh, name='spin', integrator='sundials_openmp')

    alpha = 0.1
    gamma = 2.21e5
    sim.alpha = alpha
    sim.driver.gamma = gamma
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))

    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))

    ts = np.linspace(0, 1e-9, 101)

    mx = []
    my = []
    mz = []
    real_ts = []
    for t in ts:
        sim.driver.run_until(t)
        real_ts.append(sim.driver.t)
        print(sim.driver.t, abs(sim.spin_length()[0] - 1))
        mx.append(sim.spin[0])
        my.append(sim.spin[1])
        mz.append(sim.spin[2])

    mz = np.array(mz)
    # print mz
    a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)

    print(sim.driver.stat())

    if do_plot:
        ts_ns = np.array(real_ts) * 1e9
        plt.plot(ts_ns, mx, ".", label="mx", color='DarkGreen')
        plt.plot(ts_ns, my, ".", label="my", color='darkslateblue')
        plt.plot(ts_ns, mz, ".", label="mz", color='m')
        plt.plot(ts_ns, a_mx, "--", label="analytical", color='b')
        plt.plot(ts_ns, a_my, "--",  color='b')
        plt.plot(ts_ns, a_mz, "--",  color='b')
        plt.xlabel("time (ns)")
        plt.ylabel("m")
        plt.title("integrating a macrospin")
        plt.legend()
        plt.savefig("single_spin.pdf")

    print(("Max Deviation = {0}".format(
        np.max(np.abs(mz - a_mz)))))

    assert np.max(np.abs(mz - a_mz)) < 5e-7
Exemple #26
0
def test_dmi_field_oommf(D=4.1e-3, Ms=2.6e5):

    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    dmi = DMI(D=D, type='interfacial')
    sim.add(dmi)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = dmi.compute_field()

    init_m0 = (
        r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] ' +
        r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] ' + r'0 ' + r'] ')

    # TODO: check the sign of DMI in OOMMF.
    field_oommf = compute_dmi_field(mesh, Ms=Ms, init_m0=init_m0, D=-D)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-12
Exemple #27
0
def relax_string(maxst, simname, init_im, interp, save_every=10000):
    """
    """

    # Prepare simulation
    # We define the cylinder with the Magnetisation function
    sim = Sim(mesh)
    sim.Ms = two_part

    # sim.add(UniformExchange(A=A))

    # Uniaxial anisotropy along x-axis
    sim.add(UniaxialAnisotropy(Kx, axis=(1, 0, 0)))

    # Define many initial states close to one extreme. We want to check
    # if the images in the last step, are placed mostly in equally positions
    init_images = init_im

    # Number of images between each state specified before (here we need only
    # two, one for the states between the initial and intermediate state
    # and another one for the images between the intermediate and final
    # states). Thus, the number of interpolations must always be
    # equal to 'the number of initial states specified', minus one.
    interpolations = interp

    string = StringMethod(sim,
                          init_images,
                          interpolations=interpolations,
                          name=simname,
                          integrator='verlet')
    string.integrator.stepsize = 1e-4

    # dt = integrator.stepsize means after every integrator step, the images
    # are rescaled. We can run more integrator steps if we decrease the
    # stepsize, e.g. dt=1e-3 and integrator.stepsize=1e-4
    string.relax(max_iterations=maxst,
                 save_vtks_every=save_every,
                 save_npys_every=save_every,
                 stopping_dYdt=1e-14,
                 dt=1e-4)

    return string
Exemple #28
0
def create_simulation(mesh):

    sim = Sim(mesh)
    sim.Ms = 8.6e5

    sim.set_m((1, 0, 0))
    sim.add(UniformExchange(A=1.3e-11))
    # sim.add(Demag())
    #sim.add(UniaxialAnisotropy(Kx, (1, 0, 0), name='Kx'))
    anis = UniaxialAnisotropy(1e5, axis=(1, 0, 0))
    sim.add(anis)

    return sim
Exemple #29
0
def relax_system_only_exchange(mesh):

    sim = Sim(mesh, name='relax_exchange_only')

    sim.driver.set_tols(rtol=1e-6, atol=1e-6)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m(init_m_BP)

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    sim.relax(dt=1e-13, stopping_dmdt=0.5, max_steps=5000,
              save_m_steps=None, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #30
0
def test_demag_field_oommf_large(Ms=8e5, A=1.3e-11):
    mesh = CuboidMesh(nx=150, ny=50, nz=1, dx=2.5, dy=2.5, dz=3, unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)
    demag_field = demag.compute_field()
    exch_field = exch.compute_field()

    #exact = demag.compute_exact()

    init_m0 = """
    return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
    """

    #demag_oommf = compute_demag_field(mesh, Ms=Ms, init_m0=init_m0)
    #exch_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'omfs','test_demag_field_oommf_large_Demag.ohf')
    ovf = OMF2(omf_file)
    demag_oommf = ovf.get_all_mags()

    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'omfs','test_demag_field_oommf_large_Exchange.ohf')
    ovf = OMF2(omf_file)
    exch_oommf = ovf.get_all_mags()

    mx0, mx1, mx2 = compare_fields(demag_oommf, demag_field)
    #print mx0, mx1, mx2
    assert max([mx0,mx1,mx2])< 5e-10

    mx0, mx1, mx2 = compare_fields(exch_oommf, exch_field)
    #print mx0, mx1, mx2
    assert max([mx0, mx1, mx2]) < 1e-11
Exemple #31
0
def test_exch_field_oommf(A=1e-11, Ms=2.6e5):
    """
    Compare the exchange field from Fidimag with an equivalent
    OOMMF simulation. OOMMF field data is taken from an OVF file.
    """
    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    def init_m(pos):
        x, y, z = pos
        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = exch.compute_field()

    # An equivalent initial magnetisation for OOMMF
    # The spatial variables are rescale since they are in nm
    init_m0 = (r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] '
               + r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] '
               + r'0 '
               + r'] ')

    field_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    # Test if the maximum relative errors between both simulations
    # is small enough, for every field component
    assert max([mx0, mx1, mx2]) < 1e-12
Exemple #32
0
def test_energy_dmi(Ms=8e5, D=1.32e-3):

    mesh = CuboidMesh(nx=40, ny=50, nz=1, dx=2.5, dy=2.5, dz=3, unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    dmi = DMI(D=D, type='interfacial')
    #dmi = DMI(D=D, type='bulk')
    sim.add(dmi)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 1)

    sim.set_m(init_m)

    dmi_energy = dmi.compute_energy()

    # init_m0="""
    # return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 1]
    #"""

    #field_oommf = compute_dmi_field(mesh, Ms=Ms, init_m0=init_m0, D=D)

    dmi_energy_oommf = -4.5665527749090378e-20

    print 'dmi energy', dmi_energy

    assert abs(dmi_energy - dmi_energy_oommf) / dmi_energy_oommf < 1e-15
Exemple #33
0
def test_dmi_field_oommf(D=4.1e-3, Ms=2.6e5):

    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    dmi = DMI(D=D, type='interfacial')
    sim.add(dmi)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = dmi.compute_field()

    init_m0 = (r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] '
               + r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] '
               + r'0 '
               + r'] ')

    # TODO: check the sign of DMI in OOMMF.
    field_oommf = compute_dmi_field(mesh, Ms=Ms, init_m0=init_m0, D=-D)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-12
def run_sim():
    mesh = CuboidMesh()
    sim = Sim(mesh, name='spin')
    alpha = 0.1
    gamma = 2.21e5
    sim.alpha = alpha
    sim.driver.gamma = gamma
    sim.mu_s = 1.0

    sim.set_m((1, 0, 0))
    H0 = 1e5
    sim.add(Zeeman((0, 0, H0)))
    sim.driver.run_until(1e-10)
    sim.driver.run_until(0.5e-10)
def test_dmi_field_oommf(D=4.1e-3, Ms=2.6e5):

    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    dmi = DMI(D=D, dmi_type='interfacial')
    sim.add(dmi)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = dmi.compute_field()

    init_m0 = """
        return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
        """
    # TODO: check the sign of DMI in OOMMF.
    #field_oommf = compute_dmi_field(mesh, Ms=Ms, init_m0=init_m0, D=-D)
    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'omfs','test_dmi_field_oommf.ohf')
    ovf = OMF2(omf_file)
    field_oommf = ovf.get_all_mags()

    mx0, mx1, mx2 = compare_fields(field_oommf, field)

    assert max([mx0, mx1, mx2]) < 1e-12
def test_exch_field_oommf(A=1e-11, Ms=2.6e5):

    mesh = CuboidMesh(nx=10, ny=3, nz=2, dx=0.5, unit_length=1e-9)

    sim = Sim(mesh)
    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    field = exch.compute_field()

    init_m0 = """
    return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
    """
    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                            'omfs',
                            'test_exch_field_oommf.ohf'
                            )
    ovf = OMF2(omf_file)
    field_oommf = ovf.get_all_mags()

    #field_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    mx0, mx1, mx2 = compare_fields(field_oommf, field)
    assert max([mx0, mx1, mx2]) < 1e-12
Exemple #37
0
def relax_system():
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name='relax')
    sim.driver.set_tols(rtol=1e-10, atol=1e-10)
    sim.driver.alpha = 0.5

    sim.set_m((1.0, 0, 0))

    sim.add(Zeeman((0, 0, 1e5)))

    ts = np.linspace(0, 1e-9, 1001)

    for t in ts:
        sim.run_until(t)
Exemple #38
0
def test_energy(Ms=8e5, A=1.3e-11, D=1.32e-3):

    mesh = CuboidMesh(nx=40,
                      ny=50,
                      nz=1,
                      dx=2.5,
                      dy=2.5,
                      dz=3,
                      unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    demag_energy = demag.compute_energy()
    exch_energy = exch.compute_energy()

    # init_m0="""
    # return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
    #"""

    #field_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    exch_energy_oommf = 1.9885853028738599e-19
    demag_energy_oommf = 5.5389695779175673e-19
    dmi_energy_oommf = 2.6657360769014251e-20

    print(demag_energy, exch_energy)

    assert abs(exch_energy - exch_energy_oommf) / exch_energy_oommf < 3e-15
    assert abs(demag_energy - demag_energy_oommf) / demag_energy_oommf < 1e-10
Exemple #39
0
def test_demag_field_oommf_large(Ms=8e5, A=1.3e-11):
    mesh = CuboidMesh(nx=150,
                      ny=50,
                      nz=1,
                      dx=2.5,
                      dy=2.5,
                      dz=3,
                      unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)
    demag_field = demag.compute_field()
    exch_field = exch.compute_field()

    #exact = demag.compute_exact()

    init_m0 = (
        r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] ' +
        r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] ' + r'0 ' + r'] ')

    demag_oommf = compute_demag_field(mesh, Ms=Ms, init_m0=init_m0)
    exch_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    mx0, mx1, mx2 = compare_fields(demag_oommf, demag_field)
    #print mx0, mx1, mx2
    assert max([mx0, mx1, mx2]) < 5e-10

    mx0, mx1, mx2 = compare_fields(exch_oommf, exch_field)
    #print mx0, mx1, mx2
    assert max([mx0, mx1, mx2]) < 1e-11
Exemple #40
0
def relax_neb(k, maxst, simname, init_im, interp, save_every=10000):
    """
    Execute a simulation with the NEB function of the FIDIMAG code, for a
    nano disk

    The simulations are made for a specific spring constant 'k' (a float),
    number of images 'init_im', interpolations between images 'interp'
    (an array) and a maximum of 'maxst' steps.
    'simname' is the name of the simulation, to distinguish the
    output files.

    --> vtks and npys are saved in folders starting with the 'simname'

    """

    # Prepare simulation
    # We define the small cylinder with the Magnetisation function
    sim = Sim(mesh)
    sim.Ms = cylinder

    # Energies

    # Exchange
    sim.add(UniformExchange(A=A))

    # Bulk DMI --> This produces a Bloch DW - like skyrmion
    sim.add(DMI(D=D))

    # No Demag, but this could have some effect
    # Demagnetization energy
    # sim.add(Demag())

    # Initial images (npy files or functions)
    init_images = init_im

    # Number of images between each state specified before (here we need only
    # two, one for the states between the initial and intermediate state
    # and another one for the images between the intermediate and final
    # states). Thus, the number of interpolations must always be
    # equal to 'the number of initial states specified', minus one.
    interpolations = interp

    # Initiate the NEB algorithm driver
    neb = NEB_Sundials(sim,
                       init_images,
                       interpolations=interpolations,
                       spring=k,
                       name=simname)

    # Start the relaxation
    neb.relax(max_steps=maxst,
              save_vtk_steps=save_every,
              save_npy_steps=save_every,
              stopping_dmdt=1)
def test_sim_pin():
    mesh = CuboidMesh(nx=3, ny=2, nz=1)
    sim = Sim(mesh, integrator='sundials_openmp')
    sim.set_m((0, 0.8, 0.6))
    sim.alpha = 0.1
    sim.driver.gamma = 1.0
    sim.pins = pin_fun

    anis = UniaxialAnisotropy(Ku=1, axis=[0, 0, 1], name='Dx')
    sim.add(anis)

    sim.driver.run_until(1.0)
    print(sim.spin)
    assert sim.spin[0] == 0
    assert sim.spin[2] != 0
def test_demag_field_oommf_large(Ms=8e5, A=1.3e-11):
    mesh = CuboidMesh(nx=150, ny=50, nz=1, dx=2.5, dy=2.5, dz=3, unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)
    demag_field = demag.compute_field()
    exch_field = exch.compute_field()

    #exact = demag.compute_exact()

    init_m0 = """
    return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
    """

    #demag_oommf = compute_demag_field(mesh, Ms=Ms, init_m0=init_m0)
    #exch_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'omfs','test_demag_field_oommf_large_Demag.ohf')
    ovf = OMF2(omf_file)
    demag_oommf = ovf.get_all_mags()

    omf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)),'omfs','test_demag_field_oommf_large_Exchange.ohf')
    ovf = OMF2(omf_file)
    exch_oommf = ovf.get_all_mags()

    mx0, mx1, mx2 = compare_fields(demag_oommf, demag_field)
    #print mx0, mx1, mx2
    assert max([mx0,mx1,mx2])< 5e-10

    mx0, mx1, mx2 = compare_fields(exch_oommf, exch_field)
    #print mx0, mx1, mx2
    assert max([mx0, mx1, mx2]) < 1e-11
def test_compute_field():
    """In an infinite film, we expect the demag tensor to be (0, 0, -1), and thus the
    magnetisation, if aligned in 0, 0, 1 direction, to create a demag field pointing
    with equal strength in the opposite direction.
    """

    mesh = CuboidMesh(nx=1, ny=1, nz=1, dx=2.0, dy=2.0, dz=2.0,
                      unit_length=1e-9, periodicity=(True, True, False))

    sim = Sim(mesh, name='relax')

    sim.driver.set_tols(rtol=1e-10, atol=1e-14)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m((0, 0, 1))

    demag = Demag(pbc_2d=True)
    sim.add(demag)
    field = demag.compute_field()
    print((1 + field[2] / 8.6e5))
    assert abs(1 + field[2] / 8.6e5) < 1e-10
def run_sim():
	mesh = CuboidMesh()
	sim = Sim(mesh, name='spin')
	alpha = 0.1
	gamma = 2.21e5
	sim.alpha = alpha
	sim.driver.gamma = gamma
	sim.mu_s = 1.0

	sim.set_m((1, 0, 0))
	H0 = 1e5
	sim.add(Zeeman((0, 0, H0)))
	sim.driver.run_until(1e-10)
	sim.driver.run_until(0.5e-10)
Exemple #45
0
def relax_system():
    mesh = CuboidMesh(nx=1, ny=1, nz=1)
    sim = Sim(mesh, name='relax')
    sim.driver.set_tols(rtol=1e-10, atol=1e-10)
    sim.driver.alpha = 0.5

    sim.set_m((1.0, 0, 0))

    sim.add(Zeeman((0, 0, 1e5)))

    ts = np.linspace(0, 1e-9, 1001)

    for t in ts:
        sim.run_until(t)
def relax_neb(k, maxst, simname, init_im, interp, save_every=10000):
    """
    Execute a simulation with the NEB function of the FIDIMAG code, for a
    nano disk

    The simulations are made for a specific spring constant 'k' (a float),
    number of images 'init_im', interpolations between images 'interp'
    (an array) and a maximum of 'maxst' steps.
    'simname' is the name of the simulation, to distinguish the
    output files.

    --> vtks and npys are saved in folders starting with the 'simname'

    """

    # Prepare simulation
    # We define the small cylinder with the Magnetisation function
    sim = Sim(mesh)
    sim.Ms = cylinder

    # Energies

    # Exchange
    sim.add(UniformExchange(A=A))

    # Bulk DMI --> This produces a Bloch DW - like skyrmion
    sim.add(DMI(D=D))

    # No Demag, but this could have some effect
    # Demagnetization energy
    # sim.add(Demag())

    # Initial images (npy files or functions)
    init_images = init_im

    # Number of images between each state specified before (here we need only
    # two, one for the states between the initial and intermediate state
    # and another one for the images between the intermediate and final
    # states). Thus, the number of interpolations must always be
    # equal to 'the number of initial states specified', minus one.
    interpolations = interp

    # Initiate the NEB algorithm driver
    neb = NEB_Sundials(sim,
                       init_images,
                       interpolations=interpolations,
                       spring=k,
                       name=simname)

    # Start the relaxation
    neb.relax(max_steps=maxst,
              save_vtk_steps=save_every,
              save_npy_steps=save_every,
              stopping_dmdt=1)
def test_sim_init_m_fun():
    mesh = CuboidMesh(nx=3, ny=4, nz=5)
    sim = Sim(mesh)
    sim.set_m(init_m, normalise=False)

    print(sim.spin.reshape(-1, 3).shape)
    print(sim.mesh.index(1, 2, 3))

    assert (sim.spin_at(1, 2, 3)[0] == 1)
    assert (sim.spin_at(1, 2, 3)[1] == 2)
    assert (sim.spin_at(1, 2, 3)[2] == 3)
def test_sim_pin():
    mesh = CuboidMesh(nx=3, ny=2, nz=1)
    sim = Sim(mesh, integrator='sundials_openmp')
    sim.set_m((0, 0.8, 0.6))
    sim.alpha = 0.1
    sim.driver.gamma = 1.0
    sim.pins = pin_fun

    anis = UniaxialAnisotropy(Ku=1, axis=[0, 0, 1], name='Dx')
    sim.add(anis)

    sim.driver.run_until(1.0)
    print(sim.spin)
    assert sim.spin[0] == 0
    assert sim.spin[2] != 0
Exemple #49
0
def test_exch_1d(do_plot=False):
    # Initiate the 1D mesh and magnetisation as before
    mesh = CuboidMesh(nx=100, ny=1, nz=1)
    sim = Sim(mesh)
    sim.set_m(init_m)

    # Simplify the magnetic parameters
    mu0 = 4 * np.pi * 1e-7
    sim.Ms = 1.0 / mu0

    exch = UniformExchange(1)
    sim.add(exch)

    # Compute the exchange field and reshape it in order
    # to leave every row as the [f_x, f_y, f_z] array
    # for every spin
    field = exch.compute_field()
    field.shape = (-1, 3)

    # We know that the field in x is always zero ( see the
    # analytical calculation at the beginning)
    assert max(abs(field[:, 0])) == 0

    # These are the analytical values for the exchange field in y,z
    # In this case, k=0.1 , then 2 * k^2 evaluates as 0.02
    xs = np.linspace(0, 99, 100)
    epy = -0.02 * np.sin(0.1 * xs)
    epz = -0.02 * np.cos(0.1 * xs)

    # Compare the analytical value
    # of the y component of the exchange field, with Fidimag's
    # result (second column of the reshaped field array)

    # WARNING: NOTICE that we are not considering the extremes since
    # there is a wrong expression in the border of the exchange field
    # with NO PBCs. We must FIX this test!
    assert max(abs(epy[1:-1] - field[1:-1, 1])) < 3e-5

    if do_plot:
        plt.plot(xs, field[:, 1], "-.", label="my", color='DarkGreen')
        plt.plot(xs, field[:, 2], "-.", label="mz", color='DarkGreen')
        plt.plot(xs, epy, "--", label="analytical", color='b')
        plt.plot(xs, epz, "--", color='r')
        plt.xlabel("xs")
        plt.ylabel("field")
        plt.legend()
        plt.savefig("exchange_field.pdf")
Exemple #50
0
def test_zeeman():

    mesh = CuboidMesh(nx=5, ny=2, nz=1)

    sim = Sim(mesh)
    sim.set_m((1, 0, 0))

    zeeman = Zeeman(varying_field)
    sim.add(zeeman)

    field = zeeman.compute_field()

    assert field[6] == 1.2 * (2 + 0.5)
    assert field[7] == 2.3 * 0.5
Exemple #51
0
def test_demag_field_oommf(Ms=6e5):
    mesh = CuboidMesh(nx=5, ny=2, nz=3, unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x = pos[0]

        if x <= 2:
            return (1, 0, 0)
        elif x >= 4:
            return (0, 0, 1)
        else:
            return (0, 1, 0)

    sim.set_m(init_m)
    field = demag.compute_field()
    exact = demag.compute_exact()

    init_m0 = """

    if { $x <=2e-9 } {
        return "1 0 0"
    } elseif { $x >= 4e-9 } {
        return "0 0 1"
    } else {
        return "0 1 0"
    }
    """

    field_oommf = compute_demag_field(mesh, Ms=Ms, init_m0=init_m0)

    mx0, mx1, mx2 = compare_fields(field_oommf, exact)
    print(mx0, mx1, mx2)
    assert max([mx0, mx1, mx2]) < 2e-14

    mx0, mx1, mx2 = compare_fields(field_oommf, field)
    print(mx0, mx1, mx2)

    assert np.max(abs(field - field_oommf)) < 2e-9
Exemple #52
0
def test_demag_field_oommf_large(Ms=8e5, A=1.3e-11):
    mesh = CuboidMesh(nx=150, ny=50, nz=1, dx=2.5, dy=2.5, dz=3, unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)
    demag_field = demag.compute_field()
    exch_field = exch.compute_field()

    #exact = demag.compute_exact()

    init_m0 = (r'return [list [expr {sin($x * 1e9) + $y * 1e9 + $z * 2.3e9}] '
               + r' [expr {cos($x * 1e9) + $y * 1e9 + $z * 1.3e9}] '
               + r'0 '
               + r'] ')

    demag_oommf = compute_demag_field(mesh, Ms=Ms, init_m0=init_m0)
    exch_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    mx0, mx1, mx2 = compare_fields(demag_oommf, demag_field)
    #print mx0, mx1, mx2
    assert max([mx0, mx1, mx2]) < 5e-10

    mx0, mx1, mx2 = compare_fields(exch_oommf, exch_field)
    #print mx0, mx1, mx2
    assert max([mx0, mx1, mx2]) < 1e-11
Exemple #53
0
def test_energy(Ms=8e5, A=1.3e-11, D=1.32e-3):

    mesh = CuboidMesh(nx=40, ny=50, nz=1, dx=2.5, dy=2.5, dz=3, unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 0)

    sim.set_m(init_m)

    demag_energy = demag.compute_energy()
    exch_energy = exch.compute_energy()

    # init_m0="""
    # return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 0]
    #"""

    #field_oommf = compute_exch_field(mesh, Ms=Ms, init_m0=init_m0, A=A)

    exch_energy_oommf = 1.9885853028738599e-19
    demag_energy_oommf = 5.5389695779175673e-19
    dmi_energy_oommf = 2.6657360769014251e-20

    print demag_energy, exch_energy

    assert abs(exch_energy - exch_energy_oommf) / exch_energy_oommf < 3e-15
    assert abs(demag_energy - demag_energy_oommf) / demag_energy_oommf < 1e-10
Exemple #54
0
def test_demag_field_oommf(Ms=6e5):
    mesh = CuboidMesh(nx=5, ny=2, nz=3, unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    demag = Demag()
    sim.add(demag)

    def init_m(pos):

        x = pos[0]

        if x <= 2:
            return (1, 0, 0)
        elif x >= 4:
            return (0, 0, 1)
        else:
            return (0, 1, 0)

    sim.set_m(init_m)
    field = demag.compute_field()
    exact = demag.compute_exact()

    init_m0 = """

    if { $x <=2e-9 } {
        return "1 0 0"
    } elseif { $x >= 4e-9 } {
        return "0 0 1"
    } else {
        return "0 1 0"
    }
    """

    field_oommf = compute_demag_field(mesh, Ms=Ms, init_m0=init_m0)

    mx0, mx1, mx2 = compare_fields(field_oommf, exact)
    print mx0, mx1, mx2
    assert max([mx0, mx1, mx2]) < 2e-14

    mx0, mx1, mx2 = compare_fields(field_oommf, field)
    print mx0, mx1, mx2

    assert np.max(abs(field - field_oommf)) < 2e-9
Exemple #55
0
def test_energy_dmi(Ms=8e5, D=1.32e-3):

    mesh = CuboidMesh(nx=40,
                      ny=50,
                      nz=1,
                      dx=2.5,
                      dy=2.5,
                      dz=3,
                      unit_length=1e-9)
    sim = Sim(mesh)

    sim.Ms = Ms

    dmi = DMI(D=D, type='interfacial')
    #dmi = DMI(D=D, type='bulk')
    sim.add(dmi)

    def init_m(pos):

        x, y, z = pos

        return (np.sin(x) + y + 2.3 * z, np.cos(x) + y + 1.3 * z, 1)

    sim.set_m(init_m)

    dmi_energy = dmi.compute_energy()

    # init_m0="""
    # return [list [expr {sin($x*1e9)+$y*1e9+$z*2.3e9}] [expr {cos($x*1e9)+$y*1e9+$z*1.3e9}] 1]
    #"""

    #field_oommf = compute_dmi_field(mesh, Ms=Ms, init_m0=init_m0, D=D)

    dmi_energy_oommf = -4.5665527749090378e-20

    print('dmi energy', dmi_energy)

    assert abs(dmi_energy - dmi_energy_oommf) / dmi_energy_oommf < 1e-15
Exemple #56
0
        dz=dz,
        unit_length=1e-9,
    )
else:
    print 'Using Periodic Boundary Conditions!'
    mesh = CuboidMesh(nx=nx,
                      ny=ny,
                      nz=nz,
                      dx=dx,
                      dy=dy,
                      dz=dz,
                      unit_length=1e-9,
                      pbc=(True, True, False))

# Initiate Fidimag simulation ---------------------------------------------
sim = Sim(mesh, name=args.sim_name)

# sim.driver.set_tols(rtol=1e-10, atol=1e-14)
sim.driver.alpha = args.alpha
# sim.driver.gamma = 2.211e5

if args.no_precession:
    sim.do_precession = False

# Material parameters -----------------------------------------------------

sim.Ms = args.Ms

exch = UniformExchange(A=args.A)
sim.add(exch)