Exemple #1
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.driver.set_tols(rtol=1e-10, atol=1e-14)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = spatial_Ms
    sim.driver.do_precession = False

    sim.set_m(init_m)
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag(pbc_2d=True)
    sim.add(demag)

    mT = 795.7747154594767

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-13,
              stopping_dmdt=0.01,
              max_steps=5000,
              save_m_steps=100,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #2
0
def run_fidimag(mesh):

    mu0 = 4 * np.pi * 1e-7

    Ms = 8.6e5
    A = 16e-12
    D = -3.6e-3
    K = 510e3

    sim = Sim(mesh)

    sim.set_tols(rtol=1e-10, atol=1e-10)

    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = Ms
    sim.do_precession = False

    sim.set_m((0, 0, 1))

    sim.add(UniformExchange(A))
    sim.add(DMI(D, dmi_type='interfacial'))
    sim.add(UniaxialAnisotropy(K, axis=(0, 0, 1)))

    sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000,
              save_m_steps=None, save_vtk_steps=50)

    m = sim.spin
    return m.copy()
Exemple #3
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.driver.set_tols(rtol=1e-10, atol=1e-10)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.0e5
    sim.do_precession = False

    sim.set_m((1, 0.25, 0.1))
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    sim.relax(dt=1e-13,
              stopping_dmdt=0.01,
              max_steps=5000,
              save_m_steps=100,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.driver.set_tols(rtol=1e-6, atol=1e-6)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m(init_m)

    exch = UniformExchange(A=1.3e-11)
    sim.add(exch)

    dmi = DMI(D=-4e-3)
    sim.add(dmi)

    zeeman = Zeeman((0, 0, 4e5))
    sim.add(zeeman, save_field=True)

    sim.relax(dt=1e-13, stopping_dmdt=1e-2,
              save_m_steps=None, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #5
0
def test_dw_dmi(mesh=mesh, do_plot=False):

    Ms = 8.0e5
    sim = Sim(mesh, name='relax')

    sim.set_m(m_init_dw)

    sim.set_tols(rtol=1e-8, atol=1e-12)
    sim.Ms = Ms
    sim.alpha = 0.5
    sim.do_procession = False

    A = 1.3e-11
    D = 4e-4
    Kx = 8e4
    Kp = -6e5

    sim.add(UniformExchange(A))
    sim.add(DMI(D))
    sim.add(UniaxialAnisotropy(Kx, axis=[1, 0, 0], name='Kx'))

    sim.relax(stopping_dmdt=0.01)

    xs = np.array([p[0] for p in mesh.coordinates])
    mx, my, mz = analytical(xs, A=A, D=D, K=Kx)
    mxyz = sim.spin.copy()
    mxyz = mxyz.reshape(-1, 3)

    assert max(abs(mxyz[:, 0] - mx)) < 0.002
    assert max(abs(mxyz[:, 1] - my)) < 0.002
    assert max(abs(mxyz[:, 2] - mz)) < 0.0006

    if do_plot:

        save_plot(mxyz, mx, my, mz)
Exemple #6
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m(init_m)

    exch = UniformExchange(A=1.3e-11)
    sim.add(exch)

    dmi = DMI(D=-4e-3)
    sim.add(dmi)

    zeeman = Zeeman((0, 0, 4e5))
    sim.add(zeeman, save_field=True)

    sim.relax(dt=1e-13,
              stopping_dmdt=1e-2,
              save_m_steps=None,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #7
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m(init_m)
    #sim.set_m((0,0.1,1))
    #sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    dmi = DMI(D=1.3e-3)
    sim.add(dmi)

    anis = UniaxialAnisotropy(-3.25e4, axis=(0, 0, 1))
    sim.add(anis)

    zeeman = Zeeman((0, 0, 6.014576e4))
    sim.add(zeeman, save_field=True)

    sim.relax(dt=1e-13, stopping_dmdt=0.5, max_steps=5000,
              save_m_steps=None, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #8
0
def relax_system(mesh):

    # Only relaxation
    sim = Sim(mesh, name='relax')

    # Simulation parameters
    sim.set_tols(rtol=1e-8, atol=1e-10)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_procession = False

    # The initial state passed as a function
    sim.set_m(init_m)
    # sim.set_m(np.load('m0.npy'))

    # Energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Start relaxation and save the state in m0.npy
    sim.relax(dt=1e-14,
              stopping_dmdt=0.00001,
              max_steps=5000,
              save_m_steps=None,
              save_vtk_steps=None)

    np.save('m0.npy', sim.spin)
Exemple #9
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m(init_m)
    #sim.set_m((0,0.1,1))
    #sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    dmi = DMI(D=1.3e-3)
    sim.add(dmi)

    anis = UniaxialAnisotropy(-3.25e4, axis=(0, 0, 1))
    sim.add(anis)

    zeeman = Zeeman((0, 0, 6.014576e4))
    sim.add(zeeman, save_field=True)

    sim.relax(dt=1e-13,
              stopping_dmdt=0.5,
              max_steps=5000,
              save_m_steps=None,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #10
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.set_tols(rtol=1e-10, atol=1e-14)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m((1,1,1))
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    dmi = DMI(D=1e-3)
    sim.add(dmi)

    zeeman = Zeeman((0, 0, 2e4))
    sim.add(zeeman, save_field=True)

    sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000,
              save_m_steps=None, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #11
0
def relax_system(mesh):

    # Only relaxation
    sim = Sim(mesh, name='relax')

    # Simulation parameters
    sim.driver.set_tols(rtol=1e-8, atol=1e-10)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    # The initial state passed as a function
    sim.set_m(init_m)
    # sim.set_m(np.load('m0.npy'))

    # Energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # Start relaxation and save the state in m0.npy
    sim.relax(dt=1e-14, stopping_dmdt=0.00001, max_steps=5000,
              save_m_steps=None, save_vtk_steps=None)

    np.save('m0.npy', sim.spin)
def relax_system(mesh):

    sim = Sim(mesh, name="relax")

    sim.driver.set_tols(rtol=1e-10, atol=1e-14)
    sim.driver.alpha = 0.5
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m(init_m)
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    dmi = DMI(D=1e-3)
    sim.add(dmi)

    zeeman = Zeeman((0, 0, 2e4))
    sim.add(zeeman, save_field=True)

    sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000, save_m_steps=None, save_vtk_steps=50)

    np.save("m0.npy", sim.spin)
def run_fidimag(mesh):

    mu0 = 4 * np.pi * 1e-7

    Ms = 8.6e5
    A = 16e-12
    D = -3.6e-3
    K = 510e3

    sim = Sim(mesh)

    sim.set_tols(rtol=1e-10, atol=1e-10)

    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = Ms
    sim.do_precession = False

    sim.set_m((0, 0, 1))

    sim.add(UniformExchange(A))
    sim.add(DMI(D, type='interfacial'))
    sim.add(UniaxialAnisotropy(K, axis=(0, 0, 1)))

    sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000,
              save_m_steps=None, save_vtk_steps=50)

    m = sim.spin
    return m.copy()
Exemple #14
0
def relax_system(mesh):

    sim = Sim(mesh, chi=1e-3, name='relax', driver='llbar_full')

    sim.set_tols(rtol=1e-7, atol=1e-7)
    sim.Ms = 8.0e5
    sim.alpha = 0.1
    sim.beta = 0
    sim.gamma = 2.211e5

    sim.set_m((1, 0.25, 0.1))
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    mT = 795.7747154594767
    zeeman = Zeeman([-100 * mT, 4.3 * mT, 0], name='H')
    sim.add(zeeman, save_field=True)

    demag = Demag()
    sim.add(demag)

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-12,
              stopping_dmdt=0.01,
              max_steps=5000,
              save_m_steps=100,
              save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #15
0
def test_dw_dmi(mesh=mesh, do_plot=False):

    Ms = 8.0e5
    sim = Sim(mesh, name='relax')

    sim.set_m(m_init_dw)

    sim.set_tols(rtol=1e-8, atol=1e-12)
    sim.Ms = Ms
    sim.alpha = 0.5
    sim.do_precession = False

    A = 1.3e-11
    D = 4e-4
    Kx = 8e4
    Kp = -6e5

    sim.add(UniformExchange(A))
    sim.add(DMI(D))
    sim.add(UniaxialAnisotropy(Kx, axis=[1, 0, 0], name='Kx'))

    sim.relax(stopping_dmdt=0.01)

    xs = np.array([p[0] for p in mesh.coordinates])
    mx, my, mz = analytical(xs, A=A, D=D, K=Kx)
    mxyz = sim.spin.copy()
    mxyz = mxyz.reshape(-1, 3)

    assert max(abs(mxyz[:, 0] - mx)) < 0.002
    assert max(abs(mxyz[:, 1] - my)) < 0.002
    assert max(abs(mxyz[:, 2] - mz)) < 0.0006

    if do_plot:

        save_plot(mxyz, mx, my, mz)
def relax_system(mesh):

    sim = Sim(mesh, chi=1e-3, name='relax', driver='llbar_full')

    sim.driver.set_tols(rtol=1e-7, atol=1e-7)
    sim.Ms = 8.0e5
    sim.driver.alpha = 0.1
    sim.beta = 0
    sim.driver.gamma = 2.211e5

    sim.set_m((1, 0.25, 0.1))
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    mT = 795.7747154594767
    zeeman = Zeeman([-100 * mT, 4.3 * mT, 0], name='H')
    sim.add(zeeman, save_field=True)

    demag = Demag()
    sim.add(demag)

    ONE_DEGREE_PER_NS = 17453292.52

    sim.relax(dt=1e-12, stopping_dmdt=0.01,
              max_steps=5000, save_m_steps=100, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #17
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.driver.set_tols(rtol=1e-10, atol=1e-10)
    sim.driver.alpha = 0.1
    sim.driver.gamma = 2.211e5
    sim.Ms = spatial_Ms
    print(sim.Ms)

    sim.set_m(init_m)

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    dmi = DMI(D=4e-3)
    sim.add(dmi)

    dmi2 = DMI(D=2e-3, dmi_type="interfacial")
    sim.add(dmi2)

    anis = UniaxialAnisotropy(-3e4, axis=(0, 0, 1))
    sim.add(anis)

    sim.relax(dt=1e-13,
              stopping_dmdt=5e4,
              max_steps=5000,
              save_m_steps=100,
              save_vtk_steps=50)

    #np.save('m0.npy', sim.spin)
    fd = demag.compute_field(sim.spin)
    fe = exch.compute_field(sim.spin)
    fdmi = dmi.compute_field(sim.spin)
    fdmi2 = dmi2.compute_field(sim.spin)
    fanis = anis.compute_field(sim.spin)
    np.savetxt(
        "test_fields.txt",
        np.transpose([
            np.concatenate((sim.Ms, sim.Ms, sim.Ms, [0.0])),
            np.concatenate((sim.spin, [100])),
            np.concatenate((fd, [demag.compute_energy()])),
            np.concatenate((fe, [exch.compute_energy()])),
            np.concatenate((fdmi, [dmi.compute_energy()])),
            np.concatenate((fdmi2, [dmi2.compute_energy()])),
            np.concatenate((fanis, [anis.compute_energy()]))
        ]),
        header=
        "Generated by Fidimag. Size=20x5x3, 2.5nm x 2.5nm x 3nm, Ms=8.0e5A/m, A=1.3e-11 J/m,"
        +
        "  D=4e-3 J/m^2, D_int=2e-3 J/m^2, Ku=-3e4 J/m^3 axis=(0,0,1).\n  Ms "
        + "".ljust(20) + " m0 " + "".ljust(20) + "demag" + "".ljust(20) +
        "exch" + "".ljust(22) + "dmi" + "".ljust(22) + "dmi_interfacial" +
        "".ljust(22) + "anis")
Exemple #18
0
def relax_system_only_exchange(mesh):

    sim = Sim(mesh, name='relax_exchange_only')

    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_procession = False

    sim.set_m(init_m_BP)

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    sim.relax(dt=1e-13, stopping_dmdt=0.5, max_steps=5000,
              save_m_steps=None, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #19
0
def relax_system_only_exchange(mesh):

    sim = Sim(mesh, name='relax_exchange_only')

    sim.set_tols(rtol=1e-6, atol=1e-6)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5
    sim.do_precession = False

    sim.set_m(init_m_BP)

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    sim.relax(dt=1e-13, stopping_dmdt=0.5, max_steps=5000,
              save_m_steps=None, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #20
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')

    sim.set_tols(rtol=1e-10, atol=1e-10)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.0e5
    sim.do_precession = False

    sim.set_m((1, 0.25, 0.1))
    # sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag()
    sim.add(demag)

    sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000,
              save_m_steps=100, save_vtk_steps=50)

    np.save('m0.npy', sim.spin)
Exemple #21
0
        m = m.reshape(3, -1).T[top_z]
        quiv.set_UVC(m[:, 0], m[:, 1], m[:, 2])

        # Update title
        ttime.set_text('Time: {:.4f} ns'.format(time * 1e9))
        tenergy.set_text('Energy: {:.6e} ns'.format(sim.compute_energy()))

        # fig.show()
        fig.canvas.draw()

else:
    # Fidimag automatically saves the last state
    sim.do_precession = False
    sim.relax(dt=1e-13,
              stopping_dmdt=args.stopping_dmdt,
              max_steps=args.max_steps,
              save_m_steps=args.save_files,
              save_vtk_steps=args.save_files)

    # Save final states
    sim.save_m()
    sim.save_vtk()

# -------------------------------------------------------------------------
# Files -------------------------------------------------------------------
# -------------------------------------------------------------------------

npy_dir = 'npys/'
vtk_dir = 'vtks/'
txt_dir = 'txts/'
        # reshape rows, transpose and filter according to top layer
        m = m.reshape(3, -1).T[top_z]
        quiv.set_UVC(m[:, 0], m[:, 1], m[:, 2])

        # Update title
        ttime.set_text('Time: {:.4f} ns'.format(time * 1e9))
        tenergy.set_text('Energy: {:.6e} ns'.format(sim.compute_energy()))

        # fig.show()
        fig.canvas.draw()

else:
    # Fidimag automatically saves the last state
    sim.do_precession = False
    sim.relax(dt=1e-13, stopping_dmdt=args.stopping_dmdt,
              max_steps=args.max_steps,
              save_m_steps=args.save_files,
              save_vtk_steps=args.save_files)

    # Save final states
    sim.save_m()
    sim.save_vtk()


# -------------------------------------------------------------------------
# Files -------------------------------------------------------------------
# -------------------------------------------------------------------------

npy_dir = 'npys/'
vtk_dir = 'vtks/'
txt_dir = 'txts/'
Exemple #23
0
    if x < 450:
        return (1, 0, 0)
    elif 450 <= x < 550:
        return (0, 1, 1)
    else:
        return (-1, 0, 0)


sim = Sim(mesh)
sim.alpha = alpha
sim.gamma = gamma
sim.Ms = Ms
sim.add(UniformExchange(A))
sim.add(UniaxialAnisotropy(K))
sim.set_m(init_m)
sim.relax(dt=1e-13, stopping_dmdt=0.001, max_steps=5000)

# Magnetisation x component.
mx_simulation = sim.spin.reshape((len(sim.spin) / 3, 3))[:, 0]

###################
# Analytic solution
###################
d = 1000e-9  # sample length (nm)
n_points = 500
mx_analytic = domain_wall_analytic_solution(A, K, d, n_points)

###################
# Plot solutions
###################
plt.figure(figsize=(8, 5))
Exemple #24
0
# Prepare simulation

# We define the cylinder with the Magnetisation function
sim = Sim(mesh, name='skyrmion')
sim.Ms = cylinder

# To get a faster relaxation, we tune the LLG equation parameters
sim.do_precession = False
sim.alpha = 0.5

# Initial magnetisation:
sim.set_m(init_m)

# Energies:

# Exchange
sim.add(UniformExchange(A=A))

# Bulk DMI
sim.add(DMI(D=D))

# Relax the system
sim.relax(dt=1e-12, stopping_dmdt=0.0001, max_steps=5000,
          save_m_steps=None,
          save_vtk_steps=None
          )

# Save the final relaxed state and a vtk file
np.save('sk_up.npy', sim.spin)
sim.save_vtk()
Exemple #25
0
# We define the cylinder with the Magnetisation function
sim = Sim(mesh, name='skyrmion')
sim.Ms = cylinder

# To get a faster relaxation, we tune the LLG equation parameters
sim.do_precession = False
sim.alpha = 0.5

# Initial magnetisation:
sim.set_m(init_m)

# Energies:

# Exchange
sim.add(UniformExchange(A=A))

# Bulk DMI
sim.add(DMI(D=D))

# Relax the system
sim.relax(dt=1e-12,
          stopping_dmdt=0.0001,
          max_steps=5000,
          save_m_steps=None,
          save_vtk_steps=None)

# Save the final relaxed state and a vtk file
np.save('sk_up.npy', sim.spin)
sim.save_vtk()
Exemple #26
0
sim.add(fidimag.micro.UniformExchange(A))
sim.add(fidimag.micro.UniaxialAnisotropy(Ku, axis=(0, 0, 1)))
sim.add(fidimag.micro.Zeeman((0, 0, Bz / C.mu_0)))

# sim.add(fidimag.micro.DMI(D, dmi_type='interfacial'))

# For a C_n material, there is a kind of instability when one of the DM
# constants is larger than approx 0.7 times the other DM constant
sim.add(fidimag.micro.DMI([D, 0.6 * D], dmi_type='C_n'))

sim.set_m(init_m)

sim.driver.do_precession = False
sim.driver.alpha = 0.9

sim.relax()

# ----------------------------------------------------------------------------
# Plot the 2D system

import matplotlib.pyplot as plt

m = sim.spin.reshape(-1, 3)
plt.figure(figsize=(8, 8))
plt.quiver(mesh.coordinates[:, 0],
           mesh.coordinates[:, 1],
           m[:, 0],
           m[:, 1],
           m[:, 2],
           cmap='RdYlBu')
plt.show()