Exemple #1
0
def merge_split_overlap_IntervalTree(p_acts, r_acts):
    tree = IntervalTree()
    from result_analyse.visualisation import plotJoinTree
    PACT = column_index(p_acts, 'Activity')
    PSTIME = column_index(p_acts, 'StartTime')
    PETIME = column_index(p_acts, 'EndTime')

    for row in p_acts.values:
        if (row[PACT] == 0):
            continue
        start = row[PSTIME]
        end = row[PETIME]
        startv = start.value
        endv = end.value
        if (startv == endv):
            startv = startv - 1
        #tree[start:end]={'P':{'Activitiy':act.Activity,'Type':'P','Data':act}]
        d = Data('P-act')
        d.P = {'Activity': row[PACT], 'StartTime': start, 'EndTime': end}
        d.R = None
        tree[startv:endv] = d

    RACT = column_index(r_acts, 'Activity')
    RSTIME = column_index(r_acts, 'StartTime')
    RETIME = column_index(r_acts, 'EndTime')

    for row in r_acts.values:
        if (row[RACT] == 0):
            continue
        start = row[RSTIME]
        end = row[RETIME]
        startv = start.value
        endv = end.value
        if (startv == endv):
            startv = startv - 1
        #tree[start:end]=[{'Activitiy':act.Activity,'Type':'R','Data':act}]
        d = Data('R-act')
        d.P = None
        d.R = {'Activity': row[RACT], 'StartTime': start, 'EndTime': end}
        tree[startv:endv] = d
    # cmTreePlot(tree)
    tree.split_overlaps()

    # cmTreePlot(tree)
    def data_reducer(x, y):
        res = Data('merge')
        res.R = x.R
        res.P = x.P
        if not (y.P is None):
            if (res.P is None) or y.P['EndTime'] < res.P['EndTime']:
                res.P = y.P
        if not (y.R is None):
            if (res.R is None) or y.R['EndTime'] < res.R['EndTime']:
                res.R = y.R
        return res

    tree.merge_equals(data_reducer=data_reducer)

    return tree
Exemple #2
0
 def process(self, datasetdscr, dataset):
     removekeys = []
     for sid, info in datasetdscr.sensor_desc.iterrows():
         last = {}
         last['value'] = -1000
         if (info.Nominal | info.OnChange):
             continue
         xs = dataset.s_events.loc[dataset.s_events.SID == sid]
         min = xs.value.min()
         max = xs.value.max()
         #print(min, max, max-min)
         invalid_changes = (max - min) * 0.1
         for key, event in xs.iterrows():
             invalid_changes = event['value'] * .1
             if abs(last['value'] - event['value']) < invalid_changes:
                 #print (event)
                 removekeys.append(key)
                 continue
             last = event
         # print(removekeys)
     d = Data(dataset.name)
     d.s_events = dataset.s_events.drop(removekeys)
     d.a_events = dataset.a_events
     d.s_event_list = d.s_events.values
     d.acts = dataset.acts
     d.act_map = dataset.act_map
     return d
Exemple #3
0
def prepare_segment2(func, dtype, datasetdscr):
    segmentor = func.segmentor

    func.activityFetcher.precompute(dtype)

    procdata = Data(segmentor.__str__())
    procdata.generator = segment2(dtype, datasetdscr, segmentor)
    procdata.set = []
    procdata.label = []
    procdata.set_window = []
    procdata.acts = func.acts
    procdata.s_events = dtype.s_events
    procdata.s_event_list = dtype.s_event_list
    procdata.a_events = dtype.a_events

    i = 0
    for x in procdata.generator:
        if i % 10000 == 0:
            print(segmentor.shortname(), i)
        i += 1
        procdata.set_window.append(x)
        procdata.label.append(
            func.activityFetcher.getActivity2(dtype.s_event_list, x))
    del procdata.generator
    procdata.label = np.array(procdata.label)

    return procdata
Exemple #4
0
    def makeTrainTest(self, sensor_events, activity_events):
        dataset_split = min(activity_events.StartTime) + \
            ((max(activity_events.EndTime)-min(activity_events.StartTime))*4/5)
        dataset_split = pd.to_datetime(dataset_split.date())  # day
        Train = Data('train')
        Test = Data('test')
        Train.s_events = sensor_events[sensor_events.time < dataset_split]
        Train.a_events = activity_events[
            activity_events.EndTime < dataset_split]
        Train.s_event_list = Train.s_events.values

        Test.s_events = sensor_events[sensor_events.time >= dataset_split]
        Test.a_events = activity_events[
            activity_events.EndTime >= dataset_split]
        Test.s_event_list = Test.s_events.values
        return Train, Test
Exemple #5
0
 def get_info(self):
     func=self.functions
     result=Data('Result')
     result.shortrunname=func.shortrunname
     result.functions={}
     for f in func.__dict__:
         obj = func.__dict__[f]
         if isinstance(obj, MyTask):
             result.functions[f]=(obj.shortname(),obj.params)
     return result
Exemple #6
0
    def makeFoldTrainTest(self, sensor_events, activity_events, fold):
        sdate = sensor_events.time.apply(lambda x: x.date())
        adate = activity_events.StartTime.apply(lambda x: x.date())
        days = adate.unique()
        kf = KFold(n_splits=fold)
        kf.get_n_splits(days)

        for j, (train_index, test_index) in enumerate(kf.split(days)):
            Train0 = Data('train_fold_' + str(j))
            Train0.s_events = sensor_events.loc[sdate.isin(days[train_index])]
            Train0.a_events = activity_events.loc[adate.isin(
                days[train_index])]
            Train0.s_event_list = Train0.s_events.values
            Test0 = Data('test_fold_' + str(j))
            Test0.s_events = sensor_events.loc[sdate.isin(days[test_index])]
            Test0.a_events = activity_events.loc[adate.isin(days[test_index])]
            Test0.s_event_list = Test0.s_events.values

            yield Train0, Test0
Exemple #7
0
def load():

    gt = [(65, 141), (157, 187), (260, 304), (324, 326), (380, 393),
          (455, 470), (475, 485), (505, 555), (666, 807), (814, 888),
          (903, 929)]
    a = [
        (66, 73), (78, 126), (135, 147), (175, 186), (225, 236), (274, 318),
        (349, 354), (366, 372), (423, 436), (453, 460), (467, 473), (487, 493),
        (501, 506), (515, 525), (531, 542), (545, 563), (576, 580), (607, 611),
        (641, 646), (665, 673), (678, 898), (907, 933)
    ]
    b = [(63, 136), (166, 188), (257, 310), (451, 473), (519, 546), (663, 916)]

    dataset = Data('test')
    dataset.activities = ['null', 'Act']
    dataset.activities_map = {0: 'null', 1: 'Act'}
    dataset.activities_map_inverse = {'null': 0, 'Act': 1}
    dataset.activity_events = pd.DataFrame(
        columns=["StartTime", "EndTime", "Activity", 'Duration'])

    init = pd.to_datetime('1/1/2020')
    for k in gt:
        actevent = {
            "StartTime": init + pd.to_timedelta(str(k[0]) + 's'),
            "EndTime": init + pd.to_timedelta(str(k[1]) + 's'),
            "Activity": 1,
            'Duration': pd.to_timedelta(str(k[1] - k[0]) + 's')
        }

        dataset.activity_events = dataset.activity_events.append(
            actevent, ignore_index=True)

    aevents = pd.DataFrame(
        columns=["StartTime", "EndTime", "Activity", 'Duration'])
    for k in a:
        actevent = {
            "StartTime": init + pd.to_timedelta(str(k[0]) + 's'),
            "EndTime": init + pd.to_timedelta(str(k[1]) + 's'),
            "Activity": 1,
            'Duration': pd.to_timedelta(str(k[1] - k[0]) + 's')
        }
        aevents = aevents.append(actevent, ignore_index=True)

    bevents = pd.DataFrame(
        columns=["StartTime", "EndTime", "Activity", 'Duration'])
    for k in b:
        actevent = {
            "StartTime": init + pd.to_timedelta(str(k[0]) + 's'),
            "EndTime": init + pd.to_timedelta(str(k[1]) + 's'),
            "Activity": 1,
            'Duration': pd.to_timedelta(str(k[1] - k[0]) + 's')
        }
        bevents = bevents.append(actevent, ignore_index=True)

    return dataset, aevents, bevents
def merge_split_overlap_IntervalTree(p_acts, r_acts):
    tree = IntervalTree()

    for act in p_acts:
        if (act['Activity'] == 0):
            continue
        start = act['StartTime'].value
        end = act['EndTime'].value
        if (start == end):
            start = start - 1
        #tree[start:end]={'P':{'Activitiy':act.Activity,'Type':'P','Data':act}]
        d = Data('P-act')
        d.P = act
        d.R = None
        tree[start:end] = d  #{'P':act,'PActivitiy':act.Activity}

    for act in r_acts:
        start = act['StartTime'].value
        end = act['EndTime'].value
        if (start == end):
            start = start - 1
        #tree[start:end]=[{'Activitiy':act.Activity,'Type':'R','Data':act}]
        d = Data('P-act')
        d.P = None
        d.R = act
        tree[start:end] = d  #{'R':act,'RActivitiy':act.Activity}

    tree.split_overlaps()

    def data_reducer(x, y):
        res = x
        if not (y.P is None):
            if (res.P is None) or y.P['EndTime'] < res.P['EndTime']:
                res.P = y.P
        if not (y.R is None):
            if (res.R is None) or y.R['EndTime'] < res.R['EndTime']:
                res.R = y.R
        return res

    tree.merge_equals(data_reducer=data_reducer)

    return tree
Exemple #9
0
def create(real, pred, filename):

    evalres = [{}]
    evalres[0]['test'] = Data('test res')
    evalres[0]['test'].real_events = vs.convert2event(real)
    evalres[0]['test'].pred_events = vs.convert2event(pred)
    evalres[0]['test'].quality = {}

    dataset = Data('MyDataset')
    dataset.activities = ['None', 'Act']
    dataset.activity_events = evalres[0]['test'].real_events
    dataset.activities_map_inverse = {
        k: v
        for v, k in enumerate(dataset.activities)
    }
    dataset.activities_map = {v: k for v, k in enumerate(dataset.activities)}
    dataset.sensor_events = pd.DataFrame()
    runinfo = filename

    utils.saveState([runinfo, dataset, evalres], filename)
Exemple #10
0
 def data_reducer(x, y):
     res = Data('merge')
     res.R = x.R
     res.P = x.P
     if not (y.P is None):
         if (res.P is None) or y.P['EndTime'] < res.P['EndTime']:
             res.P = y.P
     if not (y.R is None):
         if (res.R is None) or y.R['EndTime'] < res.R['EndTime']:
             res.R = y.R
     return res
Exemple #11
0
    def fewDaysSplit(self, data, count):
        sensor_events = data.s_events
        activity_events = data.a_events
        sdate = sensor_events.time.apply(lambda x: x.date())
        adate = activity_events.StartTime.apply(lambda x: x.date())
        days = adate.unique()
        import random
        selecteddays = random.sample(list(days), count)

        Train0 = Data('train_random_days' + str(selecteddays))
        Train0.s_events = sensor_events.loc[sdate.isin(selecteddays)]
        Train0.a_events = activity_events.loc[adate.isin(selecteddays)]
        Train0.s_event_list = Train0.s_events.values

        return Train0
Exemple #12
0
    def pipeline(self,func,data,train):
        import os
        os.system("taskset -p 0xff %d" % os.getpid())
        
        func.acts=self.acts
        logger.debug('Starting .... %s' % (func.shortrunname))
        Tdata=func.preprocessor.process(self.datasetdscr, data)
        logger.debug('Preprocessing Finished %s' % (func.preprocessor.shortname()))
        Sdata=prepare_segment2(func,Tdata,self.datasetdscr)
        logger.debug('Segmentation Finished %d segment created %s' % (len(Sdata.set_window), func.segmentor.shortname()))
        Sdata.set=featureExtraction(func.featureExtractor,self.datasetdscr,Sdata,True)
        logger.debug('FeatureExtraction Finished shape %s , %s' % (str(Sdata.set.shape), func.featureExtractor.shortname()))
        if(train):
            func.classifier.createmodel(Sdata.set[0].shape,len(self.acts))
            func.classifier.setWeight(self.weight)
            logger.debug('Classifier model created  %s' % (func.classifier.shortname()))
            func.classifier.train(Sdata.set, Sdata.label) 
            logger.debug('Classifier model trained  %s' % (func.classifier.shortname()))

        logger.info("Evaluating....")
        result=Data('Result')
        result.shortrunname=func.shortrunname
        result.Sdata=Sdata
        result.functions={}
        for f in func.__dict__:
            obj = func.__dict__[f]
            if isinstance(obj, MyTask):              
                result.functions[f]=(obj.shortname(),obj.params)

        
        result.predicted        =func.classifier.predict(Sdata.set)
        result.predicted_classes=func.classifier.predict_classes(Sdata.set)    
        pred_events             =func.combiner.combine(Sdata.s_event_list,Sdata.set_window,result.predicted)
        logger.debug('events merged  %s' % (func.combiner.shortname()))
        
        
        result.pred_events  =pred_events
        result.real_events  =data.a_events

        result.event_cm     =event_confusion_matrix(data.a_events,pred_events,self.acts)
        result.quality      =CMbasedMetric(result.event_cm,'macro',self.weight)
        #eventeval=EventBasedMetric(Sdata.a_events,pred_events,self.acts)
        
        logger.debug('Evalution quality is %s'%result.quality)
        return result
Exemple #13
0
def method_param_selector(callback, uniquekey):
    import itertools
    from constants import methods
    s = [
        methods.preprocessing, methods.segmentation, methods.activity_fetcher,
        methods.feature_extraction, methods.classifier
    ]
    permut = list(itertools.product(*s))

    allpool = []
    for item in permut:
        func = Data('Functions')
        func.uniquekey = uniquekey
        func.preprocessor = createFunction(item[0])
        func.segmentor = createFunction(item[1])
        func.activityFetcher = createFunction(item[2])
        func.featureExtractor = createFunction(item[3])
        func.classifier = createFunction(item[4])

        func.combiner = createFunction(methods.combiner[0])
        func.classifier_metric = createFunction(methods.classifier_metric[0])
        func.event_metric = createFunction(methods.classifier_metric[0])

        func.shortrunname = ''
        for k in func.__dict__:
            obj = func.__dict__[k]
            if isinstance(obj, MyTask):
                obj.func = func
                func.shortrunname += obj.shortname() + '_'

        optl = OptLearn(func, callback)
        allpool.append(optl)
        # break

    success, fail = run(allpool, True)

    bestJobscore = success[0].result['optq']['q']
    bestJob = success[0]
    for job in success:
        if (bestJobscore > job.result['optq']['q']):
            bestJobscore = job.result['optq']['q']
            bestJob = job

    return bestJob
Exemple #14
0
    def justifySet(self, acts, Train, add_other_action=False):
        inp = [Train]
        out = []
        if (acts[0] != 0):
            acts.insert(0, 0)

        act_map = {a: i for i, a in enumerate(acts)}
        for dtype in inp:
            ndtype = Data(dtype.name)
            ndtype.s_events = dtype.s_events
            ndtype.a_events = dtype.a_events.copy()
            ndtype.a_events.Activity = dtype.a_events.Activity.apply(
                lambda x: act_map[x]
                if x in act_map else (len(acts) if add_other_action else 0))

            out.append(ndtype)
            ndtype.act_map = act_map
            ndtype.acts = acts
        return out[0]  #Train
Exemple #15
0
import feature_extraction.Raw
# from general.libimport import *
from general.utils import Data
import metric.classical
import ml_strategy.Simple
import ml_strategy.FastFinder
import ml_strategy.SeperateGroup
import ml_strategy.WeightedGroup
import ml_strategy.WeightedGroup2
import preprocessing.SimplePreprocessing
import segmentation.Probabilistic
import segmentation.FixedEventWindow
import segmentation.FixedSlidingWindow
import segmentation.FixedTimeWindow

methods = Data('methods')

methods.segmentation = [
   
   {'method': lambda: segmentation.FixedEventWindow.FixedEventWindow(), 'params': [
       {'var': 'size', 'min': 10, 'max': 30, 'type': 'int', 'init': 10, 'range':list(range(10,26,5))},
       {'var': 'shift', 'min': 2, 'max': 20, 'type': 'int', 'init': 10, 'range':list(range(10,16,5))}
          ], 'findopt': False},
    {'method': lambda: segmentation.FixedSlidingWindow.FixedSlidingWindow(), 'params': [
        {'var': 'size' , 'min': 60, 'max': 15*60, 'type': 'float', 'init': 120/4, 'range':list(range(15,76,15))},
        {'var': 'shift', 'min': 10, 'max': 7*60 , 'type': 'float', 'init': 60/2, 'range':list(range(15,45,15))}
    ], 'findopt': False},
    {'method': lambda: segmentation.Probabilistic.Probabilistic(), 'params': [], 'findopt':False},
    # {'method': lambda:segmentation.FixedTimeWindow.FixedTimeWindow(), 'params':[
    #                  {'var':'size','min':pd.Timedelta(1, unit='s').total_seconds(), 'max': pd.Timedelta(30, unit='m').total_seconds(), 'type':'float','init':pd.Timedelta(15, unit='s').total_seconds()},
    #                  {'var':'shift','min':pd.Timedelta(1, unit='s').total_seconds(), 'max': pd.Timedelta(30, unit='m').total_seconds(), 'type':'float','init':pd.Timedelta(1, unit='s').total_seconds()}
Exemple #16
0
    def fusion(self, results, real_events, isTrain):
        intree = IntervalTree()
        logger.info("\n=======================fusion activties ========")
        # intree = IntervalTree()
        # Segmentaion ###########################
        for indx, tacts in enumerate(self.gacts):
            result = results[indx]

            for i in range(0, len(result.Sdata.set_window)):
                idx = result.Sdata.set_window[i]
                start = result.Sdata.s_event_list[idx[0], 1]
                end = result.Sdata.s_event_list[idx[-1], 1]
                rcls = result.Sdata.label[i]
                pcls = result.predicted_classes[i]
                fullprob = result.predicted[i]
                if (end == start):
                    continue
                d = Data(str(i))
                d.real = rcls
                d.pred = pcls
                d.pred_prob = fullprob
                if (isTrain):
                    self.train_quality[indx] = result.quality

                d.gindx = indx
                # {'real':rcls,'pred':pcls,'pred_prob':fullprob,'train_q':result.quality}
                intree[start:end] = d

        intree.split_overlaps()
        segments = defaultdict(dict)
        for item in intree.items():
            segments[item.begin.value << 64
                     | item.end.value]['begin'] = item.begin
            segments[item.begin.value << 64 | item.end.value]['end'] = item.end
            segments[item.begin.value << 64
                     | item.end.value][item.data.gindx] = item.data

        # Feature Extraction ###########################
        f = np.zeros((len(segments), len(self.gacts) * len(self.acts)))
        label = np.zeros(len(segments))
        times = []
        iseg = 0
        for timeseg in segments:
            seg = segments[timeseg]
            b = seg['begin']
            e = seg['end']
            times.append({'begin': b, 'end': e})
            for indx in range(len(self.gacts)):
                if (indx in seg):
                    label[iseg] = seg[indx].real
                    start = indx * len(self.acts)
                    end = (indx + 1) * len(self.acts)
                    if (self.train_quality[indx]['f1'] < 0.1):
                        continue
                    f[iseg, start:end] = seg[indx].pred_prob
            iseg += 1

        #TRAIN #######################

        if (isTrain):
            inputsize = (len(f[0]), )
            outputsize = len(self.acts)
            self.fusion_model = tf.keras.models.Sequential([
                tf.keras.layers.Dense(128, input_shape=inputsize),
                tf.keras.layers.Dense(512, activation=tf.nn.relu),
                tf.keras.layers.Dropout(0.2),
                tf.keras.layers.Dense(outputsize, activation=tf.nn.softmax)
            ],
                                                           name='fusion')
            if (np.max(label) == 0):
                # self.trained=False
                cw = np.ones(len(self.acts))
            else:
                cw = compute_class_weight("balanced", self.acts, label)

            self.fusion_model.summary()
            self.fusion_model.compile(
                optimizer='adam',
                loss='sparse_categorical_crossentropy',
                metrics=[
                    tf.keras.metrics.SparseCategoricalAccuracy(name='acc')
                ])
            self.fusion_model.fit(f, label, epochs=10, class_weight=cw)

        #EVALUATE #######################
        result = Data('result')
        result.results = results
        result.predicted = self.fusion_model.predict(f)
        result.predicted_classes = self.fusion_model.predict_classes(f)
        # predicted   = np.argmax(model.predict(f), axis=1)
        pred_events = []
        ptree = {}
        epsilon = pd.to_timedelta('1s')

        for i in range(len(f)):
            start = times[i]['begin']
            end = times[i]['end']
            pclass = result.predicted_classes[i]
            pred_events.append({
                'Activity': pclass,
                'StartTime': start,
                'EndTime': end
            })

        pred_events = pd.DataFrame(pred_events)
        pred_events = pred_events.sort_values(['StartTime'])
        pred_events = pred_events.reset_index()
        pred_events = pred_events.drop(['index'], axis=1)

        result.shortrunname = "fusion model" + str(
            {r: results[r].shortrunname
             for r in results})
        result.times = times
        result.pred_events = pred_events
        result.real_events = real_events

        result.event_cm = event_confusion_matrix(result.real_events,
                                                 result.pred_events, self.acts)
        result.quality = CMbasedMetric(result.event_cm, 'macro')
        result.functions = {r: results[r].functions for r in results}
        logger.debug('Evalution quality is %s' % result.quality)

        return result
Exemple #17
0
    def fusion(self, results, real_events, isTrain):
        intree = IntervalTree()
        logger.info("\n=======================fusion activties ========")
        # intree = IntervalTree()
        # Segmentaion ###########################
        for indx, tacts in enumerate(self.gacts):
            result = results[indx]

            for i in range(0, len(result.Sdata.set_window)):
                idx = result.Sdata.set_window[i]
                start = result.Sdata.s_event_list[idx[0], 1]
                end = result.Sdata.s_event_list[idx[-1], 1]
                rcls = result.Sdata.label[i]
                pcls = result.predicted_classes[i]
                fullprob = result.predicted[i]
                if (end == start):
                    continue
                d = Data(str(i))
                d.real = rcls
                d.pred = pcls
                d.pred_prob = fullprob
                if (isTrain):
                    self.train_quality[indx] = result.quality

                d.gindx = indx
                # {'real':rcls,'pred':pcls,'pred_prob':fullprob,'train_q':result.quality}
                intree[start:end] = d

        intree.split_overlaps()
        segments = defaultdict(dict)
        for item in intree.items():
            segments[item.begin.value << 64
                     | item.end.value]['begin'] = item.begin
            segments[item.begin.value << 64 | item.end.value]['end'] = item.end
            segments[item.begin.value << 64
                     | item.end.value][item.data.gindx] = item.data

        probs = np.zeros((len(segments), len(self.acts)))

        # Feature Extraction ###########################

        label = np.zeros(len(segments))
        times = []
        iseg = 0
        for timeseg in segments:
            seg = segments[timeseg]
            b = seg['begin']
            e = seg['end']
            times.append({'begin': b, 'end': e})
            for indx in range(len(self.gacts)):
                if (indx in seg):
                    label[iseg] = seg[indx].real
                    if (self.mode == 1):
                        probs[iseg, :] += np.array(
                            seg[indx].pred_prob
                        ) * self.train_quality[indx]['f1'] / len(self.gacts)
                    elif self.mode == 2:
                        p = np.zeros(len(self.acts))
                        p[np.argmax(seg[indx].pred_prob)] = 1
                        probs[iseg, :] += p
                    else:
                        p = np.zeros(len(self.acts))
                        p[np.argmax(seg[indx].pred_prob
                                    )] = self.train_quality[indx]['f1']
                        probs[iseg, :] += p
            iseg += 1
        plabel = np.argmax(probs, 1)

        #EVALUATE #######################
        result = Data('result')
        result.results = results
        result.predicted = probs
        result.predicted_classes = plabel
        # predicted   = np.argmax(model.predict(f), axis=1)
        pred_events = []
        ptree = {}
        epsilon = pd.to_timedelta('1s')

        for i in range(len(segments)):
            start = times[i]['begin']
            end = times[i]['end']
            pclass = result.predicted_classes[i]
            pred_events.append({
                'Activity': pclass,
                'StartTime': start,
                'EndTime': end
            })

        pred_events = pd.DataFrame(pred_events)
        pred_events = pred_events.sort_values(['StartTime'])
        pred_events = pred_events.reset_index()
        pred_events = pred_events.drop(['index'], axis=1)

        result.shortrunname = "fusion model" + str(
            {r: results[r].shortrunname
             for r in results})
        result.times = times
        result.pred_events = pred_events
        result.real_events = real_events

        result.event_cm = event_confusion_matrix(result.real_events,
                                                 result.pred_events, self.acts)
        result.quality = CMbasedMetric(result.event_cm, 'macro')
        result.functions = {r: results[r].functions for r in results}
        logger.debug('Evalution quality is %s' % result.quality)

        return result
Exemple #18
0
model.evaluate(f,label)


combiner=EmptyCombiner()
predicted=model.predict_classes(f)
# predicted   = np.argmax(model.predict(f), axis=1) 
pred_events      = []
ptree       = {}
epsilon=pd.to_timedelta('1s')

for i in range(len(f)):
    
    start   = times[i][0]
    end     = times[i][1]
    pclass  = predicted[i]

    pred_events.append({'Activity': pclass, 'StartTime': start, 'EndTime': end})

pred_events = pd.DataFrame(pred_events)
pred_events = pred_events.sort_values(['StartTime'])
pred_events = pred_events.reset_index()
pred_events = pred_events.drop(['index'], axis=1)

result=Data('result')
result.pred_events  =pred_events
result.real_events  =savedata.train_results[11].real_events

result.event_cm     =event_confusion_matrix(result.real_events,result.pred_events,savedata.acts)
result.quality      =CMbasedMetric(result.event_cm,'macro')

print(result.quality)