def get_info(self): func=self.functions result=Data('Result') result.shortrunname=func.shortrunname result.functions={} for f in func.__dict__: obj = func.__dict__[f] if isinstance(obj, MyTask): result.functions[f]=(obj.shortname(),obj.params) return result
def pipeline(self,func,data,train): import os os.system("taskset -p 0xff %d" % os.getpid()) func.acts=self.acts logger.debug('Starting .... %s' % (func.shortrunname)) Tdata=func.preprocessor.process(self.datasetdscr, data) logger.debug('Preprocessing Finished %s' % (func.preprocessor.shortname())) Sdata=prepare_segment2(func,Tdata,self.datasetdscr) logger.debug('Segmentation Finished %d segment created %s' % (len(Sdata.set_window), func.segmentor.shortname())) Sdata.set=featureExtraction(func.featureExtractor,self.datasetdscr,Sdata,True) logger.debug('FeatureExtraction Finished shape %s , %s' % (str(Sdata.set.shape), func.featureExtractor.shortname())) if(train): func.classifier.createmodel(Sdata.set[0].shape,len(self.acts)) func.classifier.setWeight(self.weight) logger.debug('Classifier model created %s' % (func.classifier.shortname())) func.classifier.train(Sdata.set, Sdata.label) logger.debug('Classifier model trained %s' % (func.classifier.shortname())) logger.info("Evaluating....") result=Data('Result') result.shortrunname=func.shortrunname result.Sdata=Sdata result.functions={} for f in func.__dict__: obj = func.__dict__[f] if isinstance(obj, MyTask): result.functions[f]=(obj.shortname(),obj.params) result.predicted =func.classifier.predict(Sdata.set) result.predicted_classes=func.classifier.predict_classes(Sdata.set) pred_events =func.combiner.combine(Sdata.s_event_list,Sdata.set_window,result.predicted) logger.debug('events merged %s' % (func.combiner.shortname())) result.pred_events =pred_events result.real_events =data.a_events result.event_cm =event_confusion_matrix(data.a_events,pred_events,self.acts) result.quality =CMbasedMetric(result.event_cm,'macro',self.weight) #eventeval=EventBasedMetric(Sdata.a_events,pred_events,self.acts) logger.debug('Evalution quality is %s'%result.quality) return result
def fusion(self, results, real_events, isTrain): intree = IntervalTree() logger.info("\n=======================fusion activties ========") # intree = IntervalTree() # Segmentaion ########################### for indx, tacts in enumerate(self.gacts): result = results[indx] for i in range(0, len(result.Sdata.set_window)): idx = result.Sdata.set_window[i] start = result.Sdata.s_event_list[idx[0], 1] end = result.Sdata.s_event_list[idx[-1], 1] rcls = result.Sdata.label[i] pcls = result.predicted_classes[i] fullprob = result.predicted[i] if (end == start): continue d = Data(str(i)) d.real = rcls d.pred = pcls d.pred_prob = fullprob if (isTrain): self.train_quality[indx] = result.quality d.gindx = indx # {'real':rcls,'pred':pcls,'pred_prob':fullprob,'train_q':result.quality} intree[start:end] = d intree.split_overlaps() segments = defaultdict(dict) for item in intree.items(): segments[item.begin.value << 64 | item.end.value]['begin'] = item.begin segments[item.begin.value << 64 | item.end.value]['end'] = item.end segments[item.begin.value << 64 | item.end.value][item.data.gindx] = item.data # Feature Extraction ########################### f = np.zeros((len(segments), len(self.gacts) * len(self.acts))) label = np.zeros(len(segments)) times = [] iseg = 0 for timeseg in segments: seg = segments[timeseg] b = seg['begin'] e = seg['end'] times.append({'begin': b, 'end': e}) for indx in range(len(self.gacts)): if (indx in seg): label[iseg] = seg[indx].real start = indx * len(self.acts) end = (indx + 1) * len(self.acts) if (self.train_quality[indx]['f1'] < 0.1): continue f[iseg, start:end] = seg[indx].pred_prob iseg += 1 #TRAIN ####################### if (isTrain): inputsize = (len(f[0]), ) outputsize = len(self.acts) self.fusion_model = tf.keras.models.Sequential([ tf.keras.layers.Dense(128, input_shape=inputsize), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(outputsize, activation=tf.nn.softmax) ], name='fusion') if (np.max(label) == 0): # self.trained=False cw = np.ones(len(self.acts)) else: cw = compute_class_weight("balanced", self.acts, label) self.fusion_model.summary() self.fusion_model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[ tf.keras.metrics.SparseCategoricalAccuracy(name='acc') ]) self.fusion_model.fit(f, label, epochs=10, class_weight=cw) #EVALUATE ####################### result = Data('result') result.results = results result.predicted = self.fusion_model.predict(f) result.predicted_classes = self.fusion_model.predict_classes(f) # predicted = np.argmax(model.predict(f), axis=1) pred_events = [] ptree = {} epsilon = pd.to_timedelta('1s') for i in range(len(f)): start = times[i]['begin'] end = times[i]['end'] pclass = result.predicted_classes[i] pred_events.append({ 'Activity': pclass, 'StartTime': start, 'EndTime': end }) pred_events = pd.DataFrame(pred_events) pred_events = pred_events.sort_values(['StartTime']) pred_events = pred_events.reset_index() pred_events = pred_events.drop(['index'], axis=1) result.shortrunname = "fusion model" + str( {r: results[r].shortrunname for r in results}) result.times = times result.pred_events = pred_events result.real_events = real_events result.event_cm = event_confusion_matrix(result.real_events, result.pred_events, self.acts) result.quality = CMbasedMetric(result.event_cm, 'macro') result.functions = {r: results[r].functions for r in results} logger.debug('Evalution quality is %s' % result.quality) return result
def fusion(self, results, real_events, isTrain): intree = IntervalTree() logger.info("\n=======================fusion activties ========") # intree = IntervalTree() # Segmentaion ########################### for indx, tacts in enumerate(self.gacts): result = results[indx] for i in range(0, len(result.Sdata.set_window)): idx = result.Sdata.set_window[i] start = result.Sdata.s_event_list[idx[0], 1] end = result.Sdata.s_event_list[idx[-1], 1] rcls = result.Sdata.label[i] pcls = result.predicted_classes[i] fullprob = result.predicted[i] if (end == start): continue d = Data(str(i)) d.real = rcls d.pred = pcls d.pred_prob = fullprob if (isTrain): self.train_quality[indx] = result.quality d.gindx = indx # {'real':rcls,'pred':pcls,'pred_prob':fullprob,'train_q':result.quality} intree[start:end] = d intree.split_overlaps() segments = defaultdict(dict) for item in intree.items(): segments[item.begin.value << 64 | item.end.value]['begin'] = item.begin segments[item.begin.value << 64 | item.end.value]['end'] = item.end segments[item.begin.value << 64 | item.end.value][item.data.gindx] = item.data probs = np.zeros((len(segments), len(self.acts))) # Feature Extraction ########################### label = np.zeros(len(segments)) times = [] iseg = 0 for timeseg in segments: seg = segments[timeseg] b = seg['begin'] e = seg['end'] times.append({'begin': b, 'end': e}) for indx in range(len(self.gacts)): if (indx in seg): label[iseg] = seg[indx].real if (self.mode == 1): probs[iseg, :] += np.array( seg[indx].pred_prob ) * self.train_quality[indx]['f1'] / len(self.gacts) elif self.mode == 2: p = np.zeros(len(self.acts)) p[np.argmax(seg[indx].pred_prob)] = 1 probs[iseg, :] += p else: p = np.zeros(len(self.acts)) p[np.argmax(seg[indx].pred_prob )] = self.train_quality[indx]['f1'] probs[iseg, :] += p iseg += 1 plabel = np.argmax(probs, 1) #EVALUATE ####################### result = Data('result') result.results = results result.predicted = probs result.predicted_classes = plabel # predicted = np.argmax(model.predict(f), axis=1) pred_events = [] ptree = {} epsilon = pd.to_timedelta('1s') for i in range(len(segments)): start = times[i]['begin'] end = times[i]['end'] pclass = result.predicted_classes[i] pred_events.append({ 'Activity': pclass, 'StartTime': start, 'EndTime': end }) pred_events = pd.DataFrame(pred_events) pred_events = pred_events.sort_values(['StartTime']) pred_events = pred_events.reset_index() pred_events = pred_events.drop(['index'], axis=1) result.shortrunname = "fusion model" + str( {r: results[r].shortrunname for r in results}) result.times = times result.pred_events = pred_events result.real_events = real_events result.event_cm = event_confusion_matrix(result.real_events, result.pred_events, self.acts) result.quality = CMbasedMetric(result.event_cm, 'macro') result.functions = {r: results[r].functions for r in results} logger.debug('Evalution quality is %s' % result.quality) return result