def create_predictor( self, transformation: transform.Transformation, trained_network: mx.gluon.HybridBlock, bin_values: np.ndarray, ) -> Predictor: prediction_network = WaveNetSampler( num_samples=self.num_parallel_samples, temperature=self.temperature, **self._get_wavenet_args(bin_values), ) # The lookup layer is specific to the sampling network here # we make sure it is initialized. prediction_network.initialize() copy_parameters( net_source=trained_network, net_dest=prediction_network, allow_missing=True, ) return RepresentableBlockPredictor( input_transform=transformation, prediction_net=prediction_network, batch_size=self.trainer.batch_size, freq=self.freq, prediction_length=self.prediction_length, ctx=self.trainer.ctx, )
def create_predictor( self, transformation: transform.Transformation, trained_network: mx.gluon.HybridBlock, bin_values: np.ndarray, ) -> Predictor: prediction_network = WaveNetSampler( num_samples=self.num_eval_samples, temperature=self.temperature, **self._get_wavenet_args(bin_values), ) # copy_parameters(net_source=trained_network, net_dest=prediction_network, ignore_extra=True) copy_parameters(net_source=trained_network, net_dest=prediction_network) return RepresentableBlockPredictor( input_transform=transformation, prediction_net=prediction_network, batch_size=self.trainer.batch_size, freq=self.freq, prediction_length=self.prediction_length, ctx=self.trainer.ctx, )