Esempio n. 1
0
    def create_predictor(
        self,
        transformation: transform.Transformation,
        trained_network: mx.gluon.HybridBlock,
        bin_values: np.ndarray,
    ) -> Predictor:

        prediction_network = WaveNetSampler(
            num_samples=self.num_parallel_samples,
            temperature=self.temperature,
            **self._get_wavenet_args(bin_values),
        )

        # The lookup layer is specific to the sampling network here
        # we make sure it is initialized.
        prediction_network.initialize()

        copy_parameters(
            net_source=trained_network,
            net_dest=prediction_network,
            allow_missing=True,
        )

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )
Esempio n. 2
0
    def create_predictor(
        self,
        transformation: transform.Transformation,
        trained_network: mx.gluon.HybridBlock,
        bin_values: np.ndarray,
    ) -> Predictor:

        prediction_network = WaveNetSampler(
            num_samples=self.num_eval_samples,
            temperature=self.temperature,
            **self._get_wavenet_args(bin_values),
        )

        # copy_parameters(net_source=trained_network, net_dest=prediction_network, ignore_extra=True)
        copy_parameters(net_source=trained_network,
                        net_dest=prediction_network)

        return RepresentableBlockPredictor(
            input_transform=transformation,
            prediction_net=prediction_network,
            batch_size=self.trainer.batch_size,
            freq=self.freq,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )