Exemple #1
0
    def findPathToClosestDot(self, gameState):
        """
        Returns a path (a list of actions) to the closest dot, starting from
        gameState.
        """
        # Here are some useful elements of the startState
        startPosition = gameState.getPacmanPosition()
        food = gameState.getFood()
        walls = gameState.getWalls()
        problem = AnyFoodSearchProblem(gameState)

        "*** YOUR CODE HERE ***"
        bfs = GraphSearch(GraphSearchType.BFS)
        return bfs.solve(problem)
def depthFirstSearch(problem):
    """
    Search the deepest nodes in the search tree first.

    Your search algorithm needs to return a list of actions that reaches the
    goal. Make sure to implement a graph search algorithm.

    To get started, you might want to try some of these simple commands to
    understand the search problem that is being passed in:

    print("Start:", problem.getStartState())
    print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
    print("Start's successors:", problem.getSuccessors(problem.getStartState()))
    """
    "*** YOUR CODE HERE ***"
    dfs = GraphSearch(GraphSearchType.DFS)
    return dfs.solve(problem, nullHeuristic)
Exemple #3
0
def batch_feature(folder_name):
    gs = GraphSearch()
    # TODO Remove all hard links.
    print(len(files))
    feature_store = []
    df = DeepFeatures(feature_type={
                      'model': 'custom', 'input_layer': 'default', 'output_layer': 'fc2'})
    # TODO Remove hardcoded value.
    file_indexes = np.random.choice(len(files), 25000)
    print(file_indexes.size)
    # TODO Move batchsize to properties file.
    batch_size = 128
    image_batch = []
    for idx, filenumber in enumerate(file_indexes):
        print(idx)
        image_decoded = scipy.ndimage.imread(
            files[filenumber], flatten=False, mode=None)
        # TODO Move hardcoded values to properties file.
        image_decoded = transform.resize(image_decoded, [224, 224, 3])
        image_decoded = np.expand_dims(image_decoded, axis=0)
        if image_batch == []:
            image_batch = image_decoded
        else:
            image_batch = np.concatenate((image_batch, image_decoded), axis=0)
        if (not (idx) % (batch_size)) or (idx >= len(file_indexes) - 1):
            print(image_batch.shape)
            feature_store.extend(df.get_feature(image_batch))
            image_batch = []
    print('feature_store shape', np.array(feature_store).shape)
    gs.create_index(np.array(feature_store, np.float32), file_indexes)
    gs.save_index()
    query = gs.knn(feature_store[0])
    print(query)
Exemple #4
0
def single_feature():

    gs = GraphSearch()
    # TODO Move to command line arguments
    folder_name = '/Users/midhun/Downloads/kagglecatsanddogs_3367a/PetImages'

    files = glob.glob(os.path.join(folder_name, '**/*.jpg'))
    print(len(files))
    feature_store = []
    df = DeepFeatures()
    file_indexes = np.random.choice(len(files), 10000)
    print(file_indexes.size)
    for idx, filenumber in enumerate(file_indexes):
        print(idx)
        image_decoded = scipy.ndimage.imread(
            files[filenumber], flatten=False, mode=None)
        image_decoded = transform.resize(image_decoded, [224, 224, 3])
        image_decoded = np.expand_dims(image_decoded, axis=0)
        feature_store.append(df.get_feature(image_decoded).ravel())
    print(np.array(feature_store).shape)
    gs.create_index(np.array(feature_store, np.float32), file_indexes)
    gs.save_index()
    query = gs.knn(feature_store[0])
    print(query)
def breadthFirstSearch(problem):
    """Search the shallowest nodes in the search tree first."""
    "*** YOUR CODE HERE ***"
    bfs = GraphSearch(GraphSearchType.BFS)
    return bfs.solve(problem, nullHeuristic)
Exemple #6
0
def BFTRecLinkedList(node_count=10000):
    self = createLinkedList(node_count)
    return GraphSearch.BFTRec(self, 0)
def aStarSearch(problem, heuristic=nullHeuristic):
    """Search the node that has the lowest combined cost and heuristic first."""
    "*** YOUR CODE HERE ***"
    aStar = GraphSearch(GraphSearchType.ASTAR)
    return aStar.solve(problem, heuristic)
def uniformCostSearch(problem):
    """Search the node of least total cost first."""
    "*** YOUR CODE HERE ***"
    ucs = GraphSearch(GraphSearchType.UCS)
    return ucs.solve(problem, nullHeuristic)
Exemple #9
0
def BFTIterLinkedList() -> List[Node]:
    graph = createLinkedList(10000)
    return GraphSearch.BFTIter(graph)
Exemple #10
0
def BFTRecLinkedList() -> List[Node]:
    graph = createLinkedList(100)
    return GraphSearch.BFTRec(graph)
	def pathCost(self, path):
		return len(path)-1

	@lru_cache()
	def heuristic(self, state):
		x, y = state
		targetX, targetY = target[0]
		return min(map(
			lambda tgt: ((tgt[0]-x)**2 + (tgt[1]-y)**2)**0.5,
			target
		))


problemDescription = ProblemDescription(discreteMatrix, initial, target)
graphSearch = GraphSearch(problemDescription)


import scipy.misc
scipy.misc.imsave('outfileAStar.jpg', outputMatrix)
print("target", target)

start = time.time()
resultAStar = graphSearch.aStar()
print("aStar time ", time.time()-start)
if resultAStar:
	print("Solution found")
	for discreteSquare in resultAStar[1:-1]:
		xDiscrete, yDiscrete = discreteSquare
		for x in range(xDiscrete*discreteSquareSize, (xDiscrete+1)*discreteSquareSize):
			for y in range(yDiscrete*discreteSquareSize, (yDiscrete+1)*discreteSquareSize):
Exemple #12
0
    # Weighted Linked List:
    wll = createWeightedLinkedList(10, 2)
    print(wll)

    # Random unweighted graph:
    print("Random Unwighted graph:")
    graph = createRandomUnweightedGraphIter(200)
    print(graph)

    # Gridgraph:
    print("Grid Graph:")
    gGraph = createRandomGridGraph(8)
    print(gGraph)

    # Graph Traversals:
    print("Graph Searches:")
    GraphSearch.printResult(GraphSearch(), GraphSearch.BFTIter(graph, 0))
    GraphSearch.printResult(
        GraphSearch(),
        GraphSearch.DFTIter(createRandomUnweightedGraphIter(200), 0))
    # print(BFTRecLinkedList()) # Exceeds max recursion depth!
    GraphSearch.printResult(GraphSearch(),
                            BFTIterLinkedList(100))  # BFT on a linked list
    GraphSearch.printResult(GraphSearch(), BFTRecLinkedList(
        100))  # Exceeds recursion limit if node_count is too high!
    # GraphSearch.printResult(GraphSearch(), BFTIterLinkedList()) # Works great with default (10,000 nodes), spams the console!

    print("Main took:", f"{time.perf_counter()-start:.3}",
          "seconds")  # Prints the time taken for main to run.
Exemple #13
0
 def BFTIterLinkedList(graph):
     from graphSearch import GraphSearch
     return GraphSearch.BFTIter(graph)
Exemple #14
0
 def BFTRecLinkedList(graph):
     from graphSearch import GraphSearch
     return GraphSearch.BFTRec(graph)
def BFTIterLinkedList(graph):
    iterativePath = GraphSearch()
    iterPath = iterativePath.BFTIter(graph)
    return iterPath
def BFTRecLinkedList(graph):
    recursivePath = GraphSearch()
    recPath = recursivePath.BFTRec(graph)
    return recPath
    print("########################## START OF TEST FOR 3C ##########################")
    linkedList = createLinkedList(25)
    printGraph(linkedList)
    print("######################## START OF TEST FOR 3D, 3E ########################")
    a = GraphNode('A')
    b = GraphNode('B')
    c = GraphNode('C')
    d = GraphNode('D')
    e = GraphNode('E')
    f = GraphNode('F')  # Unconnected node
    a.neighbors = [b, c]
    b.neighbors = [d, e, a]
    c.neighbors = [a]
    d.neighbors = [b]
    e.neighbors = [b]
    path = GraphSearch()
    dfsRec = path.DFSRec(a, e)
    dfsIter = path.DFSIter(a, e)
    print("Recursive DFS Traversal is: ")
    printTraversal(dfsRec)
    print("Iterative DFS Traversal is: ")
    printTraversal(dfsIter)

    print("######################## START OF TEST FOR 3F, 3G ########################")
    graph = Graph()
    g = GraphNode('G')
    graph.addNode(g.val)
    h = GraphNode('H')
    graph.addNode(h.val)
    i = GraphNode('I')
    graph.addNode(i.val)
Exemple #18
0
def main():
    graph = createRandomUnweightedGraphIter(10)
    nodes = graph.getAllNodes()
    listOfNodes = list(nodes)
    listOfNodes.sort(key=lambda x: x.nodeVal)
    dfs_rec_arr = GraphSearch.DFSRec(listOfNodes[3], listOfNodes[9])
    dfs_iter_arr = GraphSearch.DFSIter(listOfNodes[3], listOfNodes[9])
    bft_rec_arr = GraphSearch.BFTRec(graph)
    bft_iter_arr = GraphSearch.BFTIter(graph)
    print("--- Random Unweighted Graph ---")
    printGraph(graph)
    print("--- DFS-Rec ---")
    printList(dfs_rec_arr)
    print("\n--- DFS-Iter ---")
    printList(dfs_iter_arr)
    print("\n--- BFT-Rec ---")
    printList(bft_rec_arr)
    print("\n--- BFT-Iter ---")
    printList(bft_iter_arr)

    _graph = createLinkedList(10)
    _nodes = _graph.getAllNodes()
    _listOfNodes = list(_nodes)
    _listOfNodes.sort(key=lambda x: x.nodeVal)
    _dfs_rec_arr = GraphSearch.DFSRec(_listOfNodes[3], _listOfNodes[9])
    _dfs_iter_arr = GraphSearch.DFSIter(_listOfNodes[3], _listOfNodes[9])
    _bft_rec_arr = GraphSearch.BFTRec(_graph)
    _bft_iter_arr = GraphSearch.BFTIter(_graph)
    print("\n--- Linked List ---")
    printGraph(_graph)
    print("--- DFS-Rec ---")
    printList(_dfs_rec_arr)
    print("\n--- DFS-Iter ---")
    printList(_dfs_iter_arr)
    print("\n--- BFT-Rec ---")
    printList(_bft_rec_arr)
    print("\n--- BFT-Iter ---")
    printList(_bft_iter_arr)

    topSort_graph = createRandomDAGIter(1000)
    print("\n--- Random Directed Acyclic Graph ---")
    printGraph(topSort_graph)
    topSort_kahns = TopSort.Kahns(topSort_graph)
    print("--- Kahns Output---")
    printList(topSort_kahns)
    topSort_mDFS = TopSort.mDFS(topSort_graph)
    print("\n--- mDFS Output ---")
    printList(topSort_mDFS)

    dijkstras_graph = createRandomCompleteWeightedGraph(1000)
    print("\n--- Random Complete Weighted Graph ---")
    printGraph(dijkstras_graph)
    dijkstras_result = runDijkstras(dijkstras_graph, 2)
    print("--- Dijkstras Output ---")
    printDijkstras(dijkstras_result)

    astar_graph = createRandomGridGraph(100)
    print("--- Random Grid Graph ---")
    printGraph(astar_graph)
    astar_result = runAstar(astar_graph, 0, 9999)
    print("--- A* Output ---")
    printList(astar_result)
Exemple #19
0
            if num != 0:
                linkedGraph.addUndirectedEdge(num - 1, num)
        return linkedGraph

    @staticmethod
    def BFTRecLinkedList(graph):
        return graphSearch.BFTRec(graph)

    @staticmethod
    def BFTIterLinkedList(graph):
        return graphSearch.BFTIter(graph)


if __name__ == "__main__":
    main = Main()
    graphSearch = GraphSearch()
    graph1 = main.createRandomUnweightedGraphIter(10)
    graph2 = main.createLinkedList(10)
    graphRec = main.createLinkedList(100)
    graphIter = main.createLinkedList(10000)
    graph3 = main.BFTRecLinkedList(graphRec)
    graph4 = main.BFTIterLinkedList(graphIter)

    print("-------------Unweighted Graph-------------" + "\n"
          "DFS-Rec: " + str(graphSearch.DFSRec(graph1, 4, 8)) + "\n"
          "DFS-Iter: " + str(graphSearch.DFSIter(graph1, 4, 8)) + "\n"
          "BFT-Rec: " + str(graphSearch.BFTRec(graph1)) + "\n"
          "BFT-Iter: " + str(graphSearch.BFTIter(graph1)) + "\n")

    print("---------------Linked List----------------" + "\n"
          "DFS-Rec: " + str(graphSearch.DFSRec(graph2, 4, 8)) + "\n"
Exemple #20
0
def BFTIterLinkedList(node_count=10000):
    self = createLinkedList(node_count)
    print(self)
    return GraphSearch.BFTIter(self, 0)