def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx, bMat, vInv, wavelength, bVec, eVec, omePeriod, simOnly=False, returnScalarValue=returnScalarValue): """ """ npts = len(xyo_det) refineFlag = np.hstack([pFlag, dFlag]) # pFull[refineFlag] = pFit/scl[refineFlag] pFull[refineFlag] = pFit dParams = pFull[-len(dFlag):] xy_unwarped = dFunc(xyo_det[:, :2], dParams) # detector quantities rMat_d = xf.makeDetectorRotMat(pFull[:3]) tVec_d = pFull[3:6].reshape(3, 1) # sample quantities chi = pFull[6] tVec_s = pFull[7:10].reshape(3, 1) # crystal quantities rMat_c = xf.makeRotMatOfExpMap(pFull[10:13]) tVec_c = pFull[13:16].reshape(3, 1) gVec_c = np.dot(bMat, hkls_idx) vMat_s = mutil.vecMVToSymm(vInv) # stretch tensor comp matrix from MV notation in SAMPLE frame gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # reciprocal lattice vectors in SAMPLE frame gHat_s = mutil.unitVector(gVec_s) # unit reciprocal lattice vectors in SAMPLE frame gHat_c = np.dot(rMat_c.T, gHat_s) # unit reciprocal lattice vectors in CRYSTAL frame match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): print "infeasible pFull: may want to scale back finite difference step size" # return values if simOnly: retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: diff_vecs_xy = calc_xy - xy_unwarped[:, :2] diff_ome = xf.angularDifference( calc_omes, xyo_det[:, 2] ) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1) ]).flatten() if returnScalarValue: retval = sum( retval ) return retval
def xy_of_angs(self, angs): """ Cartesion coordinates of vstacked (tth, eta) pairs *) wrapper for transforms.anglesToGVec """ gVec_l = xf.anglesToGVec(angs, self.bVec, self.eVec, rMat_s=None, rMat_c=None) xy = xf.gvecToDetectorXY(gVec_l, self.rMat, I3, I3, self.tVec, self.tVec_s, self.tVec_c, distortion=self.distortion, beamVec=self.bVec, etaVec=self.eVec) return xy
def angles_to_cart(self, tth_eta): """ TODO: distortion """ rmat_s = rmat_c = ct.identity_3x3 tvec_s = tvec_c = ct.zeros_3 angs = np.hstack([tth_eta, np.zeros((len(tth_eta), 1))]) xy_det = gvecToDetectorXY( anglesToGVec(angs, bHat_l=self.bvec, eHat_l=self.evec), self.rmat, rmat_s, rmat_c, self.tvec, tvec_s, tvec_c, beamVec=self.bvec) return xy_det
def angles_to_cart(self, tth_eta): """ TODO: distortion """ rmat_s = rmat_c = ct.identity_3x3 tvec_s = tvec_c = ct.zeros_3 angs = np.hstack([tth_eta, np.zeros((len(tth_eta), 1))]) xy_det = gvecToDetectorXY(anglesToGVec(angs, bHat_l=self.bvec, eHat_l=self.evec), self.rmat, rmat_s, rmat_c, self.tvec, tvec_s, tvec_c, beamVec=self.bvec) return xy_det
def make_reflection_patches( instr_cfg, tth_eta, ang_pixel_size, omega=None, tth_tol=0.2, eta_tol=1.0, rMat_c=np.eye(3), tVec_c=np.c_[0.0, 0.0, 0.0].T, distortion=distortion, npdiv=1, quiet=False, compute_areas_func=compute_areas, ): """ prototype function for making angular patches on a detector panel_dims are [(xmin, ymin), (xmax, ymax)] in mm pixel_pitch is [row_size, column_size] in mm DISTORTION HANDING IS STILL A KLUDGE patches are: delta tth d ------------- ... ------------- e | x | x | x | ... | x | x | x | l ------------- ... ------------- t . a . . e ------------- ... ------------- t | x | x | x | ... | x | x | x | a ------------- ... ------------- """ npts = len(tth_eta) # detector frame rMat_d = xfcapi.makeDetectorRotMat(instr_cfg["detector"]["transform"]["tilt_angles"]) tVec_d = np.r_[instr_cfg["detector"]["transform"]["t_vec_d"]] pixel_size = instr_cfg["detector"]["pixels"]["size"] frame_nrows = instr_cfg["detector"]["pixels"]["rows"] frame_ncols = instr_cfg["detector"]["pixels"]["columns"] panel_dims = ( -0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]], 0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]], ) row_edges = np.arange(frame_nrows + 1)[::-1] * pixel_size[1] + panel_dims[0][1] col_edges = np.arange(frame_ncols + 1) * pixel_size[0] + panel_dims[0][0] # sample frame chi = instr_cfg["oscillation_stage"]["chi"] tVec_s = np.r_[instr_cfg["oscillation_stage"]["t_vec_s"]] # data to loop # ...WOULD IT BE CHEAPER TO CARRY ZEROS OR USE CONDITIONAL? if omega is None: full_angs = np.hstack([tth_eta, np.zeros((npts, 1))]) else: full_angs = np.hstack([tth_eta, omega.reshape(npts, 1)]) patches = [] for angs, pix in zip(full_angs, ang_pixel_size): # need to get angular pixel size rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) ndiv_tth = npdiv * np.ceil(tth_tol / np.degrees(pix[0])) ndiv_eta = npdiv * np.ceil(eta_tol / np.degrees(pix[1])) tth_del = np.arange(0, ndiv_tth + 1) * tth_tol / float(ndiv_tth) - 0.5 * tth_tol eta_del = np.arange(0, ndiv_eta + 1) * eta_tol / float(ndiv_eta) - 0.5 * eta_tol # store dimensions for convenience # * etas and tths are bin vertices, ome is already centers sdims = [len(eta_del) - 1, len(tth_del) - 1] # meshgrid args are (cols, rows), a.k.a (fast, slow) m_tth, m_eta = np.meshgrid(tth_del, eta_del) npts_patch = m_tth.size # calculate the patch XY coords from the (tth, eta) angles # * will CHEAT and ignore the small perturbation the different # omega angle values causes and simply use the central value gVec_angs_vtx = np.tile(angs, (npts_patch, 1)) + np.radians( np.vstack([m_tth.flatten(), m_eta.flatten(), np.zeros(npts_patch)]).T ) # will need this later rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) # FOR ANGULAR MESH conn = gutil.cellConnectivity(sdims[0], sdims[1], origin="ll") gVec_c = xf.anglesToGVec(gVec_angs_vtx, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval_vtx = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval_vtx = distortion[0](xy_eval_vtx, distortion[1], invert=True) pass areas = compute_areas_func(xy_eval_vtx, conn) # EVALUATION POINTS # * for lack of a better option will use centroids tth_eta_cen = gutil.cellCentroids(np.atleast_2d(gVec_angs_vtx[:, :2]), conn) gVec_angs = np.hstack([tth_eta_cen, np.tile(angs[2], (len(tth_eta_cen), 1))]) gVec_c = xf.anglesToGVec(gVec_angs, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval = distortion[0](xy_eval, distortion[1], invert=True) pass row_indices = gutil.cellIndices(row_edges, xy_eval[:, 1]) col_indices = gutil.cellIndices(col_edges, xy_eval[:, 0]) patches.append( ( (gVec_angs_vtx[:, 0].reshape(m_tth.shape), gVec_angs_vtx[:, 1].reshape(m_tth.shape)), (xy_eval_vtx[:, 0].reshape(m_tth.shape), xy_eval_vtx[:, 1].reshape(m_tth.shape)), conn, areas.reshape(sdims[0], sdims[1]), (row_indices.reshape(sdims[0], sdims[1]), col_indices.reshape(sdims[0], sdims[1])), ) ) pass return patches
def objFuncFitGrain(gFit, gFull, gFlag, detectorParams, xyo_det, hkls_idx, bMat, wavelength, bVec, eVec, dFunc, dParams, omePeriod, simOnly=False, returnScalarValue=returnScalarValue): """ gFull[0] = expMap_c[0] gFull[1] = expMap_c[1] gFull[2] = expMap_c[2] gFull[3] = tVec_c[0] gFull[4] = tVec_c[1] gFull[5] = tVec_c[2] gFull[6] = vInv_MV[0] gFull[7] = vInv_MV[1] gFull[8] = vInv_MV[2] gFull[9] = vInv_MV[3] gFull[10] = vInv_MV[4] gFull[11] = vInv_MV[5] detectorParams[0] = tiltAngles[0] detectorParams[1] = tiltAngles[1] detectorParams[2] = tiltAngles[2] detectorParams[3] = tVec_d[0] detectorParams[4] = tVec_d[1] detectorParams[5] = tVec_d[2] detectorParams[6] = chi detectorParams[7] = tVec_s[0] detectorParams[8] = tVec_s[1] detectorParams[9] = tVec_s[2] """ npts = len(xyo_det) gFull[gFlag] = gFit xy_unwarped = dFunc(xyo_det[:, :2], dParams) rMat_d = xfcapi.makeDetectorRotMat(detectorParams[:3]) tVec_d = detectorParams[3:6].reshape(3, 1) chi = detectorParams[6] tVec_s = detectorParams[7:10].reshape(3, 1) rMat_c = xfcapi.makeRotMatOfExpMap(gFull[:3]) tVec_c = gFull[3:6].reshape(3, 1) vInv_s = gFull[6:] vMat_s = mutil.vecMVToSymm(vInv_s) # NOTE: Inverse of V from F = V * R gVec_c = np.dot(bMat, hkls_idx) # gVecs with magnitudes in CRYSTAL frame gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # stretched gVecs in SAMPLE frame gHat_c = mutil.unitVector( np.dot(rMat_c.T, gVec_s)) # unit reciprocal lattice vectors in CRYSTAL frame match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv_s, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): print "infeasible pFull" # return values if simOnly: retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: diff_vecs_xy = calc_xy - xy_unwarped[:, :2] diff_ome = xf.angularDifference( calc_omes, xyo_det[:, 2] ) retval = mutil.rowNorm( np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1) ]) ).flatten() if returnScalarValue: retval = sum( retval ) return retval
def pull_spots(self, plane_data, grain_params, imgser_dict, tth_tol=0.25, eta_tol=1., ome_tol=1., npdiv=2, threshold=10, eta_ranges=[(-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), dirname='results', filename=None, output_format='text', save_spot_list=False, quiet=True, check_only=False, interp='nearest'): """ Exctract reflection info from a rotation series encoded as an OmegaImageseries object """ # grain parameters rMat_c = makeRotMatOfExpMap(grain_params[:3]) tVec_c = grain_params[3:6] # grab omega ranges from first imageseries # # WARNING: all imageseries AND all wedges within are assumed to have # the same omega values; put in a check that they are all the same??? oims0 = imgser_dict[imgser_dict.keys()[0]] ome_ranges = [np.radians([i['ostart'], i['ostop']]) for i in oims0.omegawedges.wedges] # delta omega in DEGREES grabbed from first imageseries in the dict delta_ome = oims0.omega[0, 1] - oims0.omega[0, 0] # make omega grid for frame expansion around reference frame # in DEGREES ndiv_ome, ome_del = make_tolerance_grid( delta_ome, ome_tol, 1, adjust_window=True, ) # generate structuring element for connected component labeling if ndiv_ome == 1: label_struct = ndimage.generate_binary_structure(2, 2) else: label_struct = ndimage.generate_binary_structure(3, 3) # simulate rotation series sim_results = self.simulate_rotation_series( plane_data, [grain_params, ], eta_ranges=eta_ranges, ome_ranges=ome_ranges, ome_period=ome_period) # patch vertex generator (global for instrument) tol_vec = 0.5*np.radians( [-tth_tol, -eta_tol, -tth_tol, eta_tol, tth_tol, eta_tol, tth_tol, -eta_tol]) # prepare output if requested if filename is not None and output_format.lower() == 'hdf5': this_filename = os.path.join(dirname, filename) writer = io.GrainDataWriter_h5( os.path.join(dirname, filename), self.write_config(), grain_params) # ===================================================================== # LOOP OVER PANELS # ===================================================================== iRefl = 0 compl = [] output = dict.fromkeys(self.detectors) for detector_id in self.detectors: # initialize text-based output writer if filename is not None and output_format.lower() == 'text': output_dir = os.path.join( dirname, detector_id ) if not os.path.exists(output_dir): os.makedirs(output_dir) this_filename = os.path.join( output_dir, filename ) writer = io.PatchDataWriter(this_filename) # grab panel panel = self.detectors[detector_id] instr_cfg = panel.config_dict(self.chi, self.tvec) native_area = panel.pixel_area # pixel ref area # pull out the OmegaImageSeries for this panel from input dict ome_imgser = imgser_dict[detector_id] # extract simulation results sim_results_p = sim_results[detector_id] hkl_ids = sim_results_p[0][0] hkls_p = sim_results_p[1][0] ang_centers = sim_results_p[2][0] xy_centers = sim_results_p[3][0] ang_pixel_size = sim_results_p[4][0] # now verify that full patch falls on detector... # ???: strictly necessary? # # patch vertex array from sim nangs = len(ang_centers) patch_vertices = ( np.tile(ang_centers[:, :2], (1, 4)) + np.tile(tol_vec, (nangs, 1)) ).reshape(4*nangs, 2) ome_dupl = np.tile( ang_centers[:, 2], (4, 1) ).T.reshape(len(patch_vertices), 1) # find vertices that all fall on the panel det_xy, _ = xrdutil._project_on_detector_plane( np.hstack([patch_vertices, ome_dupl]), panel.rmat, rMat_c, self.chi, panel.tvec, tVec_c, self.tvec, panel.distortion) _, on_panel = panel.clip_to_panel(det_xy, buffer_edges=True) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(nangs, 4), axis=1) patch_xys = det_xy.reshape(nangs, 4, 2)[patch_is_on] # re-filter... hkl_ids = hkl_ids[patch_is_on] hkls_p = hkls_p[patch_is_on, :] ang_centers = ang_centers[patch_is_on, :] xy_centers = xy_centers[patch_is_on, :] ang_pixel_size = ang_pixel_size[patch_is_on, :] # TODO: add polygon testing right here! # done <JVB 06/21/16> if check_only: patch_output = [] for i_pt, angs in enumerate(ang_centers): # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(angs[2]) + ome_del # ...vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkls_p[i_pt, :]) print(msg) continue else: these_vertices = patch_xys[i_pt] ijs = panel.cartToPixel(these_vertices) ii, jj = polygon(ijs[:, 0], ijs[:, 1]) contains_signal = False for i_frame in frame_indices: contains_signal = contains_signal or np.any( ome_imgser[i_frame][ii, jj] > threshold ) compl.append(contains_signal) patch_output.append((ii, jj, frame_indices)) else: # make the tth,eta patches for interpolation patches = xrdutil.make_reflection_patches( instr_cfg, ang_centers[:, :2], ang_pixel_size, omega=ang_centers[:, 2], tth_tol=tth_tol, eta_tol=eta_tol, rMat_c=rMat_c, tVec_c=tVec_c, distortion=panel.distortion, npdiv=npdiv, quiet=True, beamVec=self.beam_vector) # GRAND LOOP over reflections for this panel patch_output = [] for i_pt, patch in enumerate(patches): # strip relevant objects out of current patch vtx_angs, vtx_xy, conn, areas, xy_eval, ijs = patch prows, pcols = areas.shape nrm_fac = areas/float(native_area) nrm_fac = nrm_fac / np.min(nrm_fac) # grab hkl info hkl = hkls_p[i_pt, :] hkl_id = hkl_ids[i_pt] # edge arrays tth_edges = vtx_angs[0][0, :] delta_tth = tth_edges[1] - tth_edges[0] eta_edges = vtx_angs[1][:, 0] delta_eta = eta_edges[1] - eta_edges[0] # need to reshape eval pts for interpolation xy_eval = np.vstack([xy_eval[0].flatten(), xy_eval[1].flatten()]).T # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(ang_centers[i_pt, 2]) + ome_del # ???: vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkl) print(msg) continue else: # initialize spot data parameters # !!! maybe change these to nan to not f**k up writer peak_id = -999 sum_int = None max_int = None meas_angs = None meas_xy = None # quick check for intensity contains_signal = False patch_data_raw = [] for i_frame in frame_indices: tmp = ome_imgser[i_frame][ijs[0], ijs[1]] contains_signal = contains_signal or np.any( tmp > threshold ) patch_data_raw.append(tmp) pass patch_data_raw = np.stack(patch_data_raw, axis=0) compl.append(contains_signal) if contains_signal: # initialize patch data array for intensities if interp.lower() == 'bilinear': patch_data = np.zeros( (len(frame_indices), prows, pcols)) for i, i_frame in enumerate(frame_indices): patch_data[i] = \ panel.interpolate_bilinear( xy_eval, ome_imgser[i_frame], pad_with_nans=False ).reshape(prows, pcols) # * nrm_fac elif interp.lower() == 'nearest': patch_data = patch_data_raw # * nrm_fac else: msg = "interpolation option " + \ "'%s' not understood" raise(RuntimeError, msg % interp) # now have interpolated patch data... labels, num_peaks = ndimage.label( patch_data > threshold, structure=label_struct ) slabels = np.arange(1, num_peaks + 1) if num_peaks > 0: peak_id = iRefl coms = np.array( ndimage.center_of_mass( patch_data, labels=labels, index=slabels ) ) if num_peaks > 1: center = np.r_[patch_data.shape]*0.5 center_t = np.tile(center, (num_peaks, 1)) com_diff = coms - center_t closest_peak_idx = np.argmin( np.sum(com_diff**2, axis=1) ) else: closest_peak_idx = 0 pass # end multipeak conditional coms = coms[closest_peak_idx] # meas_omes = \ # ome_edges[0] + (0.5 + coms[0])*delta_ome meas_omes = \ ome_eval[0] + coms[0]*delta_ome meas_angs = np.hstack( [tth_edges[0] + (0.5 + coms[2])*delta_tth, eta_edges[0] + (0.5 + coms[1])*delta_eta, mapAngle( np.radians(meas_omes), ome_period ) ] ) # intensities # - summed is 'integrated' over interpolated # data # - max is max of raw input data sum_int = np.sum( patch_data[ labels == slabels[closest_peak_idx] ] ) max_int = np.max( patch_data_raw[ labels == slabels[closest_peak_idx] ] ) # ???: Should this only use labeled pixels? # Those are segmented from interpolated data, # not raw; likely ok in most cases. # need MEASURED xy coords gvec_c = anglesToGVec( meas_angs, chi=self.chi, rMat_c=rMat_c, bHat_l=self.beam_vector) rMat_s = makeOscillRotMat( [self.chi, meas_angs[2]] ) meas_xy = gvecToDetectorXY( gvec_c, panel.rmat, rMat_s, rMat_c, panel.tvec, self.tvec, tVec_c, beamVec=self.beam_vector) if panel.distortion is not None: # FIXME: distortion handling meas_xy = panel.distortion[0]( np.atleast_2d(meas_xy), panel.distortion[1], invert=True).flatten() pass # FIXME: why is this suddenly necessary??? meas_xy = meas_xy.squeeze() pass # end num_peaks > 0 else: patch_data = patch_data_raw pass # end contains_signal # write output if filename is not None: if output_format.lower() == 'text': writer.dump_patch( peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, xy_centers[i_pt], meas_xy) elif output_format.lower() == 'hdf5': xyc_arr = xy_eval.reshape( prows, pcols, 2 ).transpose(2, 0, 1) writer.dump_patch( detector_id, iRefl, peak_id, hkl_id, hkl, tth_edges, eta_edges, np.radians(ome_eval), xyc_arr, ijs, frame_indices, patch_data, ang_centers[i_pt], xy_centers[i_pt], meas_angs, meas_xy) pass # end conditional on write output pass # end conditional on check only patch_output.append([ peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, meas_xy, ]) iRefl += 1 pass # end patch conditional pass # end patch loop output[detector_id] = patch_output if filename is not None and output_format.lower() == 'text': writer.close() pass # end detector loop if filename is not None and output_format.lower() == 'hdf5': writer.close() return compl, output
def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx, bMat, vInv, bVec, eVec, omePeriod, simOnly=False, return_value_flag=return_value_flag): """ """ npts = len(xyo_det) refineFlag = np.array(np.hstack([pFlag, dFlag]), dtype=bool) print refineFlag # pFull[refineFlag] = pFit/scl[refineFlag] pFull[refineFlag] = pFit if dFunc is not None: dParams = pFull[-len(dFlag):] xys = dFunc(xyo_det[:, :2], dParams) else: xys = xyo_det[:, :2] # detector quantities wavelength = pFull[0] rMat_d = xf.makeDetectorRotMat(pFull[1:4]) tVec_d = pFull[4:7].reshape(3, 1) # sample quantities chi = pFull[7] tVec_s = pFull[8:11].reshape(3, 1) # crystal quantities rMat_c = xf.makeRotMatOfExpMap(pFull[11:14]) tVec_c = pFull[14:17].reshape(3, 1) # stretch tensor comp matrix from MV notation in SAMPLE frame vMat_s = mutil.vecMVToSymm(vInv) # g-vectors: # 1. calculate full g-vector components in CRYSTAL frame from B # 2. rotate into SAMPLE frame and apply stretch # 3. rotate back into CRYSTAL frame and normalize to unit magnitude # IDEA: make a function for this sequence of operations with option for # choosing ouput frame (i.e. CRYSTAL vs SAMPLE vs LAB) gVec_c = np.dot(bMat, hkls_idx) gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) gHat_c = mutil.unitVector(np.dot(rMat_c.T, gVec_s)) match_omes, calc_omes = matchOmegas( xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): raise RuntimeError( "infeasible pFull: may want to scale" + "back finite difference step size") # return values if simOnly: # return simulated values retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: # return residual vector # IDEA: try angles instead of xys? diff_vecs_xy = calc_xy - xys[:, :2] diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2]) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1) ]).flatten() if return_value_flag == 1: # return scalar sum of squared residuals retval = sum(abs(retval)) elif return_value_flag == 2: # return DOF-normalized chisq # TODO: check this calculation denom = npts - len(pFit) - 1. if denom != 0: nu_fac = 1. / denom else: nu_fac = 1. nu_fac = 1 / (npts - len(pFit) - 1.) retval = nu_fac * sum(retval**2) return retval
tth_vec = tth_size * (np.arange(ntth) - 0.5 * ntth - 1) + tth0 eta_vec = eta_size * (np.arange(neta) - 0.5 * neta - 1) + eta0 angpts = np.meshgrid(eta_vec, tth_vec, indexing='ij') gpts = xfc.anglesToGVec(np.vstack([ np.radians(angpts[1].flatten()), np.radians(angpts[0].flatten()), np.zeros(neta * ntth) ]).T, bHat_l=d.bvec) xypts = xfc.gvecToDetectorXY(gpts, d.rmat, np.eye(3), np.eye(3), d.tvec, np.zeros(3), np.zeros(3), beamVec=d.bvec) img2 = d.interpolate_bilinear(xypts, average_frame).reshape(neta, ntth) img3 = copy.deepcopy(img2) borders = np.isnan(img2) img2[borders] = 0. img3[borders] = 0. img3 += np.min(img3) + 1 img3 = np.log(img3) img3[borders] = np.nan extent = (np.min(angpts[1]), np.max(angpts[1]), np.min(angpts[0]), np.max(angpts[0]))
except (KeyError): distortion = None # for defining patches delta_eta = 0.5 neta = int(360 / float(delta_eta)) eta = np.radians(delta_eta * np.linspace(0, neta - 1, num=neta)) angs = [ np.vstack([i * np.ones(neta), eta, np.zeros(neta)]) for i in pd.getTTh() ] # need xy coords and pixel sizes gVec_ring_l = xf.anglesToGVec(angs[0].T, xf.bVec_ref, xf.eta_ref) xydet_ring = xfcapi.gvecToDetectorXY(gVec_ring_l.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None: det_xy = distortion[0](xydet_ring, distortion[1], invert=True) ang_ps = angularPixelSize(det_xy, pixel_pitch, rMat_d, rMat_s, tVec_d, tVec_s, tVec_c, distortion=distortion) def compute_areas(xy_eval_vtx, conn): areas = np.zeros(len(conn))
def simulate_laue_pattern(self, crystal_data, minEnergy=5., maxEnergy=35., rmat_s=None, tvec_s=None, grain_params=None, beam_vec=None): """ """ if isinstance(crystal_data, PlaneData): plane_data = crystal_data # grab the expanded list of hkls from plane_data hkls = np.hstack(plane_data.getSymHKLs()) # and the unit plane normals (G-vectors) in CRYSTAL FRAME gvec_c = np.dot(plane_data.latVecOps['B'], hkls) elif len(crystal_data) == 2: # !!! should clean this up hkls = np.array(crystal_data[0]) bmat = crystal_data[1] gvec_c = np.dot(bmat, hkls) else: raise (RuntimeError, 'argument list not understood') nhkls_tot = hkls.shape[1] # parse energy ranges # TODO: allow for spectrum parsing multipleEnergyRanges = False if hasattr(maxEnergy, '__len__'): assert len(maxEnergy) == len(minEnergy), \ 'energy cutoff ranges must have the same length' multipleEnergyRanges = True lmin = [] lmax = [] for i in range(len(maxEnergy)): lmin.append(ct.keVToAngstrom(maxEnergy[i])) lmax.append(ct.keVToAngstrom(minEnergy[i])) else: lmin = ct.keVToAngstrom(maxEnergy) lmax = ct.keVToAngstrom(minEnergy) # parse grain parameters kwarg if grain_params is None: grain_params = np.atleast_2d( np.hstack([np.zeros(6), ct.identity_6x1])) n_grains = len(grain_params) # sample rotation if rmat_s is None: rmat_s = ct.identity_3x3 # dummy translation vector... make input if tvec_s is None: tvec_s = ct.zeros_3 # beam vector if beam_vec is None: beam_vec = ct.beam_vec # ========================================================================= # LOOP OVER GRAINS # ========================================================================= # pre-allocate output arrays xy_det = np.nan * np.ones((n_grains, nhkls_tot, 2)) hkls_in = np.nan * np.ones((n_grains, 3, nhkls_tot)) angles = np.nan * np.ones((n_grains, nhkls_tot, 2)) dspacing = np.nan * np.ones((n_grains, nhkls_tot)) energy = np.nan * np.ones((n_grains, nhkls_tot)) for iG, gp in enumerate(grain_params): rmat_c = makeRotMatOfExpMap(gp[:3]) tvec_c = gp[3:6].reshape(3, 1) vInv_s = mutil.vecMVToSymm(gp[6:].reshape(6, 1)) # stretch them: V^(-1) * R * Gc gvec_s_str = np.dot(vInv_s, np.dot(rmat_c, gvec_c)) ghat_c_str = mutil.unitVector(np.dot(rmat_c.T, gvec_s_str)) # project dpts = gvecToDetectorXY(ghat_c_str.T, self.rmat, rmat_s, rmat_c, self.tvec, tvec_s, tvec_c, beamVec=beam_vec) # check intersections with detector plane canIntersect = ~np.isnan(dpts[:, 0]) npts_in = sum(canIntersect) if np.any(canIntersect): dpts = dpts[canIntersect, :].reshape(npts_in, 2) dhkl = hkls[:, canIntersect].reshape(3, npts_in) # back to angles tth_eta, gvec_l = detectorXYToGvec(dpts, self.rmat, rmat_s, self.tvec, tvec_s, tvec_c, beamVec=beam_vec) tth_eta = np.vstack(tth_eta).T # warp measured points if self.distortion is not None: if len(self.distortion) == 2: dpts = self.distortion[0](dpts, self.distortion[1], invert=True) else: raise (RuntimeError, "something is wrong with the distortion") # plane spacings and energies dsp = 1. / rowNorm(gvec_s_str[:, canIntersect].T) wlen = 2 * dsp * np.sin(0.5 * tth_eta[:, 0]) # clip to detector panel _, on_panel = self.clip_to_panel(dpts, buffer_edges=True) if multipleEnergyRanges: validEnergy = np.zeros(len(wlen), dtype=bool) for i in range(len(lmin)): in_energy_range = np.logical_and( wlen >= lmin[i], wlen <= lmax[i]) validEnergy = validEnergy | in_energy_range pass else: validEnergy = np.logical_and(wlen >= lmin, wlen <= lmax) pass # index for valid reflections keepers = np.where(np.logical_and(on_panel, validEnergy))[0] # assign output arrays xy_det[iG][keepers, :] = dpts[keepers, :] hkls_in[iG][:, keepers] = dhkl[:, keepers] angles[iG][keepers, :] = tth_eta[keepers, :] dspacing[iG, keepers] = dsp[keepers] energy[iG, keepers] = ct.keVToAngstrom(wlen[keepers]) pass # close conditional on valids pass # close loop on grains return xy_det, hkls_in, angles, dspacing, energy
dparams = instr_cfg["detector"]["distortion"]["parameters"] distortion = (xf.dFunc_ref, dparams) except (KeyError): distortion = None # for defining patches delta_eta = 0.5 neta = int(360 / float(delta_eta)) eta = np.radians(delta_eta * np.linspace(0, neta - 1, num=neta)) angs = [np.vstack([i * np.ones(neta), eta, np.zeros(neta)]) for i in pd.getTTh()] # need xy coords and pixel sizes gVec_ring_l = xf.anglesToGVec(angs[0].T, xf.bVec_ref, xf.eta_ref) xydet_ring = xfcapi.gvecToDetectorXY(gVec_ring_l.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None: det_xy = distortion[0](xydet_ring, distortion[1], invert=True) ang_ps = angularPixelSize(det_xy, pixel_pitch, rMat_d, rMat_s, tVec_d, tVec_s, tVec_c, distortion=distortion) def compute_areas(xy_eval_vtx, conn): areas = np.zeros(len(conn)) for i in range(len(conn)): polygon = [[xy_eval_vtx[conn[i, j], 0], xy_eval_vtx[conn[i, j], 1]] for j in range(4)] areas[i] = gutil.computeArea(polygon) return areas @numba.jit
def simulate_laue_pattern(self, crystal_data, minEnergy=5., maxEnergy=35., rmat_s=None, tvec_s=None, grain_params=None, beam_vec=None): """ """ if isinstance(crystal_data, PlaneData): plane_data = crystal_data # grab the expanded list of hkls from plane_data hkls = np.hstack(plane_data.getSymHKLs()) # and the unit plane normals (G-vectors) in CRYSTAL FRAME gvec_c = np.dot(plane_data.latVecOps['B'], hkls) elif len(crystal_data) == 2: # !!! should clean this up hkls = np.array(crystal_data[0]) bmat = crystal_data[1] gvec_c = np.dot(bmat, hkls) else: raise(RuntimeError, 'argument list not understood') nhkls_tot = hkls.shape[1] # parse energy ranges # TODO: allow for spectrum parsing multipleEnergyRanges = False if hasattr(maxEnergy, '__len__'): assert len(maxEnergy) == len(minEnergy), \ 'energy cutoff ranges must have the same length' multipleEnergyRanges = True lmin = [] lmax = [] for i in range(len(maxEnergy)): lmin.append(ct.keVToAngstrom(maxEnergy[i])) lmax.append(ct.keVToAngstrom(minEnergy[i])) else: lmin = ct.keVToAngstrom(maxEnergy) lmax = ct.keVToAngstrom(minEnergy) # parse grain parameters kwarg if grain_params is None: grain_params = np.atleast_2d( np.hstack([np.zeros(6), ct.identity_6x1]) ) n_grains = len(grain_params) # sample rotation if rmat_s is None: rmat_s = ct.identity_3x3 # dummy translation vector... make input if tvec_s is None: tvec_s = ct.zeros_3 # beam vector if beam_vec is None: beam_vec = ct.beam_vec # ========================================================================= # LOOP OVER GRAINS # ========================================================================= # pre-allocate output arrays xy_det = np.nan*np.ones((n_grains, nhkls_tot, 2)) hkls_in = np.nan*np.ones((n_grains, 3, nhkls_tot)) angles = np.nan*np.ones((n_grains, nhkls_tot, 2)) dspacing = np.nan*np.ones((n_grains, nhkls_tot)) energy = np.nan*np.ones((n_grains, nhkls_tot)) for iG, gp in enumerate(grain_params): rmat_c = makeRotMatOfExpMap(gp[:3]) tvec_c = gp[3:6].reshape(3, 1) vInv_s = mutil.vecMVToSymm(gp[6:].reshape(6, 1)) # stretch them: V^(-1) * R * Gc gvec_s_str = np.dot(vInv_s, np.dot(rmat_c, gvec_c)) ghat_c_str = mutil.unitVector(np.dot(rmat_c.T, gvec_s_str)) # project dpts = gvecToDetectorXY(ghat_c_str.T, self.rmat, rmat_s, rmat_c, self.tvec, tvec_s, tvec_c, beamVec=beam_vec) # check intersections with detector plane canIntersect = ~np.isnan(dpts[:, 0]) npts_in = sum(canIntersect) if np.any(canIntersect): dpts = dpts[canIntersect, :].reshape(npts_in, 2) dhkl = hkls[:, canIntersect].reshape(3, npts_in) # back to angles tth_eta, gvec_l = detectorXYToGvec( dpts, self.rmat, rmat_s, self.tvec, tvec_s, tvec_c, beamVec=beam_vec) tth_eta = np.vstack(tth_eta).T # warp measured points if self.distortion is not None: if len(self.distortion) == 2: dpts = self.distortion[0]( dpts, self.distortion[1], invert=True) else: raise(RuntimeError, "something is wrong with the distortion") # plane spacings and energies dsp = 1. / rowNorm(gvec_s_str[:, canIntersect].T) wlen = 2*dsp*np.sin(0.5*tth_eta[:, 0]) # clip to detector panel _, on_panel = self.clip_to_panel(dpts, buffer_edges=True) if multipleEnergyRanges: validEnergy = np.zeros(len(wlen), dtype=bool) for i in range(len(lmin)): in_energy_range = np.logical_and( wlen >= lmin[i], wlen <= lmax[i]) validEnergy = validEnergy | in_energy_range pass else: validEnergy = np.logical_and(wlen >= lmin, wlen <= lmax) pass # index for valid reflections keepers = np.where(np.logical_and(on_panel, validEnergy))[0] # assign output arrays xy_det[iG][keepers, :] = dpts[keepers, :] hkls_in[iG][:, keepers] = dhkl[:, keepers] angles[iG][keepers, :] = tth_eta[keepers, :] dspacing[iG, keepers] = dsp[keepers] energy[iG, keepers] = ct.keVToAngstrom(wlen[keepers]) pass # close conditional on valids pass # close loop on grains return xy_det, hkls_in, angles, dspacing, energy
def make_powder_rings( self, pd, merge_hkls=False, delta_tth=None, delta_eta=10., eta_period=None, rmat_s=ct.identity_3x3, tvec_s=ct.zeros_3, tvec_c=ct.zeros_3, full_output=False): """ """ # in case you want to give it tth angles directly if hasattr(pd, '__len__'): tth = np.array(pd).flatten() if delta_tth is None: raise RuntimeError( "If supplying a 2theta list as first arg, " + "must supply a delta_tth") sector_vertices = np.tile( 0.5*np.radians([-delta_tth, -delta_eta, -delta_tth, delta_eta, delta_tth, delta_eta, delta_tth, -delta_eta, 0.0, 0.0]), (len(tth), 1) ) else: # Okay, we have a PlaneData object pd = PlaneData.makeNew(pd) # make a copy to munge if delta_tth is not None: pd.tThWidth = np.radians(delta_tth) else: delta_tth = np.degrees(pd.tThWidth) # conversions, meh... del_eta = np.radians(delta_eta) # do merging if asked if merge_hkls: _, tth_ranges = pd.getMergedRanges() tth = np.array([0.5*sum(i) for i in tth_ranges]) else: tth_ranges = pd.getTThRanges() tth = pd.getTTh() tth_pm = tth_ranges - np.tile(tth, (2, 1)).T sector_vertices = np.vstack( [[i[0], -del_eta, i[0], del_eta, i[1], del_eta, i[1], -del_eta, 0.0, 0.0] for i in tth_pm]) # for generating rings if eta_period is None: eta_period = (-np.pi, np.pi) neta = int(360./float(delta_eta)) eta = mapAngle( np.radians(delta_eta*(np.linspace(0, neta - 1, num=neta) + 0.5)) + eta_period[0], eta_period ) angs = [np.vstack([i*np.ones(neta), eta, np.zeros(neta)]) for i in tth] # need xy coords and pixel sizes valid_ang = [] valid_xy = [] map_indices = [] npp = 5 # [ll, ul, ur, lr, center] for i_ring in range(len(angs)): # expand angles to patch vertices these_angs = angs[i_ring].T patch_vertices = ( np.tile(these_angs[:, :2], (1, npp)) + np.tile(sector_vertices[i_ring], (neta, 1)) ).reshape(npp*neta, 2) # duplicate ome array ome_dupl = np.tile( these_angs[:, 2], (npp, 1) ).T.reshape(npp*neta, 1) # find vertices that all fall on the panel gVec_ring_l = anglesToGVec( np.hstack([patch_vertices, ome_dupl]), bHat_l=self.bvec) all_xy = gvecToDetectorXY( gVec_ring_l, self.rmat, rmat_s, ct.identity_3x3, self.tvec, tvec_s, tvec_c, beamVec=self.bvec) _, on_panel = self.clip_to_panel(all_xy) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(neta, npp), axis=1) patch_xys = all_xy.reshape(neta, 5, 2)[patch_is_on] idx = np.where(patch_is_on)[0] valid_ang.append(these_angs[patch_is_on, :2]) valid_xy.append(patch_xys[:, -1, :].squeeze()) map_indices.append(idx) pass # ??? is this option necessary? if full_output: return valid_ang, valid_xy, map_indices, eta else: return valid_ang, valid_xy
def objFuncFitGrain(gFit, gFull, gFlag, detectorParams, xyo_det, hkls_idx, bMat, wavelength, bVec, eVec, dFunc, dParams, omePeriod, simOnly=False, returnScalarValue=returnScalarValue): """ gFull[0] = expMap_c[0] gFull[1] = expMap_c[1] gFull[2] = expMap_c[2] gFull[3] = tVec_c[0] gFull[4] = tVec_c[1] gFull[5] = tVec_c[2] gFull[6] = vInv_MV[0] gFull[7] = vInv_MV[1] gFull[8] = vInv_MV[2] gFull[9] = vInv_MV[3] gFull[10] = vInv_MV[4] gFull[11] = vInv_MV[5] detectorParams[0] = tiltAngles[0] detectorParams[1] = tiltAngles[1] detectorParams[2] = tiltAngles[2] detectorParams[3] = tVec_d[0] detectorParams[4] = tVec_d[1] detectorParams[5] = tVec_d[2] detectorParams[6] = chi detectorParams[7] = tVec_s[0] detectorParams[8] = tVec_s[1] detectorParams[9] = tVec_s[2] """ npts = len(xyo_det) gFull[gFlag] = gFit xy_unwarped = dFunc(xyo_det[:, :2], dParams) rMat_d = xfcapi.makeDetectorRotMat(detectorParams[:3]) tVec_d = detectorParams[3:6].reshape(3, 1) chi = detectorParams[6] tVec_s = detectorParams[7:10].reshape(3, 1) rMat_c = xfcapi.makeRotMatOfExpMap(gFull[:3]) tVec_c = gFull[3:6].reshape(3, 1) vInv_s = gFull[6:] vMat_s = mutil.vecMVToSymm(vInv_s) # NOTE: Inverse of V from F = V * R gVec_c = np.dot(bMat, hkls_idx) # gVecs with magnitudes in CRYSTAL frame gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # stretched gVecs in SAMPLE frame gHat_c = mutil.unitVector(np.dot( rMat_c.T, gVec_s)) # unit reciprocal lattice vectors in CRYSTAL frame match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv_s, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): print "infeasible pFull" # return values if simOnly: retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: diff_vecs_xy = calc_xy - xy_unwarped[:, :2] diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2]) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1)]).flatten() if returnScalarValue: retval = sum(retval) return retval
def pull_spots(self, plane_data, grain_params, imgser_dict, tth_tol=0.25, eta_tol=1., ome_tol=1., npdiv=2, threshold=10, eta_ranges=[ (-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), dirname='results', filename=None, output_format='text', save_spot_list=False, quiet=True, check_only=False, interp='nearest'): """ Exctract reflection info from a rotation series encoded as an OmegaImageseries object """ # grain parameters rMat_c = makeRotMatOfExpMap(grain_params[:3]) tVec_c = grain_params[3:6] # grab omega ranges from first imageseries # # WARNING: all imageseries AND all wedges within are assumed to have # the same omega values; put in a check that they are all the same??? oims0 = imgser_dict[imgser_dict.keys()[0]] ome_ranges = [ np.radians([i['ostart'], i['ostop']]) for i in oims0.omegawedges.wedges ] # delta omega in DEGREES grabbed from first imageseries in the dict delta_ome = oims0.omega[0, 1] - oims0.omega[0, 0] # make omega grid for frame expansion around reference frame # in DEGREES ndiv_ome, ome_del = make_tolerance_grid( delta_ome, ome_tol, 1, adjust_window=True, ) # generate structuring element for connected component labeling if ndiv_ome == 1: label_struct = ndimage.generate_binary_structure(2, 2) else: label_struct = ndimage.generate_binary_structure(3, 3) # simulate rotation series sim_results = self.simulate_rotation_series(plane_data, [ grain_params, ], eta_ranges=eta_ranges, ome_ranges=ome_ranges, ome_period=ome_period) # patch vertex generator (global for instrument) tol_vec = 0.5 * np.radians([ -tth_tol, -eta_tol, -tth_tol, eta_tol, tth_tol, eta_tol, tth_tol, -eta_tol ]) # prepare output if requested if filename is not None and output_format.lower() == 'hdf5': this_filename = os.path.join(dirname, filename) writer = io.GrainDataWriter_h5(os.path.join(dirname, filename), self.write_config(), grain_params) # ===================================================================== # LOOP OVER PANELS # ===================================================================== iRefl = 0 compl = [] output = dict.fromkeys(self.detectors) for detector_id in self.detectors: # initialize text-based output writer if filename is not None and output_format.lower() == 'text': output_dir = os.path.join(dirname, detector_id) if not os.path.exists(output_dir): os.makedirs(output_dir) this_filename = os.path.join(output_dir, filename) writer = io.PatchDataWriter(this_filename) # grab panel panel = self.detectors[detector_id] instr_cfg = panel.config_dict(self.chi, self.tvec) native_area = panel.pixel_area # pixel ref area # pull out the OmegaImageSeries for this panel from input dict ome_imgser = imgser_dict[detector_id] # extract simulation results sim_results_p = sim_results[detector_id] hkl_ids = sim_results_p[0][0] hkls_p = sim_results_p[1][0] ang_centers = sim_results_p[2][0] xy_centers = sim_results_p[3][0] ang_pixel_size = sim_results_p[4][0] # now verify that full patch falls on detector... # ???: strictly necessary? # # patch vertex array from sim nangs = len(ang_centers) patch_vertices = (np.tile(ang_centers[:, :2], (1, 4)) + np.tile(tol_vec, (nangs, 1))).reshape( 4 * nangs, 2) ome_dupl = np.tile(ang_centers[:, 2], (4, 1)).T.reshape(len(patch_vertices), 1) # find vertices that all fall on the panel det_xy, _ = xrdutil._project_on_detector_plane( np.hstack([patch_vertices, ome_dupl]), panel.rmat, rMat_c, self.chi, panel.tvec, tVec_c, self.tvec, panel.distortion) _, on_panel = panel.clip_to_panel(det_xy, buffer_edges=True) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(nangs, 4), axis=1) patch_xys = det_xy.reshape(nangs, 4, 2)[patch_is_on] # re-filter... hkl_ids = hkl_ids[patch_is_on] hkls_p = hkls_p[patch_is_on, :] ang_centers = ang_centers[patch_is_on, :] xy_centers = xy_centers[patch_is_on, :] ang_pixel_size = ang_pixel_size[patch_is_on, :] # TODO: add polygon testing right here! # done <JVB 06/21/16> if check_only: patch_output = [] for i_pt, angs in enumerate(ang_centers): # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(angs[2]) + ome_del # ...vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkls_p[i_pt, :]) print(msg) continue else: these_vertices = patch_xys[i_pt] ijs = panel.cartToPixel(these_vertices) ii, jj = polygon(ijs[:, 0], ijs[:, 1]) contains_signal = False for i_frame in frame_indices: contains_signal = contains_signal or np.any( ome_imgser[i_frame][ii, jj] > threshold) compl.append(contains_signal) patch_output.append((ii, jj, frame_indices)) else: # make the tth,eta patches for interpolation patches = xrdutil.make_reflection_patches( instr_cfg, ang_centers[:, :2], ang_pixel_size, omega=ang_centers[:, 2], tth_tol=tth_tol, eta_tol=eta_tol, rMat_c=rMat_c, tVec_c=tVec_c, distortion=panel.distortion, npdiv=npdiv, quiet=True, beamVec=self.beam_vector) # GRAND LOOP over reflections for this panel patch_output = [] for i_pt, patch in enumerate(patches): # strip relevant objects out of current patch vtx_angs, vtx_xy, conn, areas, xy_eval, ijs = patch prows, pcols = areas.shape nrm_fac = areas / float(native_area) nrm_fac = nrm_fac / np.min(nrm_fac) # grab hkl info hkl = hkls_p[i_pt, :] hkl_id = hkl_ids[i_pt] # edge arrays tth_edges = vtx_angs[0][0, :] delta_tth = tth_edges[1] - tth_edges[0] eta_edges = vtx_angs[1][:, 0] delta_eta = eta_edges[1] - eta_edges[0] # need to reshape eval pts for interpolation xy_eval = np.vstack( [xy_eval[0].flatten(), xy_eval[1].flatten()]).T # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(ang_centers[i_pt, 2]) + ome_del # ???: vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkl) print(msg) continue else: # initialize spot data parameters # !!! maybe change these to nan to not f**k up writer peak_id = -999 sum_int = None max_int = None meas_angs = None meas_xy = None # quick check for intensity contains_signal = False patch_data_raw = [] for i_frame in frame_indices: tmp = ome_imgser[i_frame][ijs[0], ijs[1]] contains_signal = contains_signal or np.any( tmp > threshold) patch_data_raw.append(tmp) pass patch_data_raw = np.stack(patch_data_raw, axis=0) compl.append(contains_signal) if contains_signal: # initialize patch data array for intensities if interp.lower() == 'bilinear': patch_data = np.zeros( (len(frame_indices), prows, pcols)) for i, i_frame in enumerate(frame_indices): patch_data[i] = \ panel.interpolate_bilinear( xy_eval, ome_imgser[i_frame], pad_with_nans=False ).reshape(prows, pcols) # * nrm_fac elif interp.lower() == 'nearest': patch_data = patch_data_raw # * nrm_fac else: msg = "interpolation option " + \ "'%s' not understood" raise (RuntimeError, msg % interp) # now have interpolated patch data... labels, num_peaks = ndimage.label( patch_data > threshold, structure=label_struct) slabels = np.arange(1, num_peaks + 1) if num_peaks > 0: peak_id = iRefl coms = np.array( ndimage.center_of_mass(patch_data, labels=labels, index=slabels)) if num_peaks > 1: center = np.r_[patch_data.shape] * 0.5 center_t = np.tile(center, (num_peaks, 1)) com_diff = coms - center_t closest_peak_idx = np.argmin( np.sum(com_diff**2, axis=1)) else: closest_peak_idx = 0 pass # end multipeak conditional coms = coms[closest_peak_idx] # meas_omes = \ # ome_edges[0] + (0.5 + coms[0])*delta_ome meas_omes = \ ome_eval[0] + coms[0]*delta_ome meas_angs = np.hstack([ tth_edges[0] + (0.5 + coms[2]) * delta_tth, eta_edges[0] + (0.5 + coms[1]) * delta_eta, mapAngle(np.radians(meas_omes), ome_period) ]) # intensities # - summed is 'integrated' over interpolated # data # - max is max of raw input data sum_int = np.sum(patch_data[ labels == slabels[closest_peak_idx]]) max_int = np.max(patch_data_raw[ labels == slabels[closest_peak_idx]]) # ???: Should this only use labeled pixels? # Those are segmented from interpolated data, # not raw; likely ok in most cases. # need MEASURED xy coords gvec_c = anglesToGVec(meas_angs, chi=self.chi, rMat_c=rMat_c, bHat_l=self.beam_vector) rMat_s = makeOscillRotMat( [self.chi, meas_angs[2]]) meas_xy = gvecToDetectorXY( gvec_c, panel.rmat, rMat_s, rMat_c, panel.tvec, self.tvec, tVec_c, beamVec=self.beam_vector) if panel.distortion is not None: # FIXME: distortion handling meas_xy = panel.distortion[0]( np.atleast_2d(meas_xy), panel.distortion[1], invert=True).flatten() pass # FIXME: why is this suddenly necessary??? meas_xy = meas_xy.squeeze() pass # end num_peaks > 0 else: patch_data = patch_data_raw pass # end contains_signal # write output if filename is not None: if output_format.lower() == 'text': writer.dump_patch(peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, xy_centers[i_pt], meas_xy) elif output_format.lower() == 'hdf5': xyc_arr = xy_eval.reshape(prows, pcols, 2).transpose( 2, 0, 1) writer.dump_patch( detector_id, iRefl, peak_id, hkl_id, hkl, tth_edges, eta_edges, np.radians(ome_eval), xyc_arr, ijs, frame_indices, patch_data, ang_centers[i_pt], xy_centers[i_pt], meas_angs, meas_xy) pass # end conditional on write output pass # end conditional on check only patch_output.append([ peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, meas_xy, ]) iRefl += 1 pass # end patch conditional pass # end patch loop output[detector_id] = patch_output if filename is not None and output_format.lower() == 'text': writer.close() pass # end detector loop if filename is not None and output_format.lower() == 'hdf5': writer.close() return compl, output
def make_powder_rings(self, pd, merge_hkls=False, delta_tth=None, delta_eta=10., eta_period=None, rmat_s=ct.identity_3x3, tvec_s=ct.zeros_3, tvec_c=ct.zeros_3, full_output=False): """ """ # in case you want to give it tth angles directly if hasattr(pd, '__len__'): tth = np.array(pd).flatten() if delta_tth is None: raise RuntimeError( "If supplying a 2theta list as first arg, " + "must supply a delta_tth") sector_vertices = np.tile( 0.5 * np.radians([ -delta_tth, -delta_eta, -delta_tth, delta_eta, delta_tth, delta_eta, delta_tth, -delta_eta, 0.0, 0.0 ]), (len(tth), 1)) else: # Okay, we have a PlaneData object pd = PlaneData.makeNew(pd) # make a copy to munge if delta_tth is not None: pd.tThWidth = np.radians(delta_tth) else: delta_tth = np.degrees(pd.tThWidth) # conversions, meh... del_eta = np.radians(delta_eta) # do merging if asked if merge_hkls: _, tth_ranges = pd.getMergedRanges() tth = np.array([0.5 * sum(i) for i in tth_ranges]) else: tth_ranges = pd.getTThRanges() tth = pd.getTTh() tth_pm = tth_ranges - np.tile(tth, (2, 1)).T sector_vertices = np.vstack([[ i[0], -del_eta, i[0], del_eta, i[1], del_eta, i[1], -del_eta, 0.0, 0.0 ] for i in tth_pm]) # for generating rings if eta_period is None: eta_period = (-np.pi, np.pi) neta = int(360. / float(delta_eta)) eta = mapAngle( np.radians(delta_eta * (np.linspace(0, neta - 1, num=neta) + 0.5)) + eta_period[0], eta_period) angs = [ np.vstack([i * np.ones(neta), eta, np.zeros(neta)]) for i in tth ] # need xy coords and pixel sizes valid_ang = [] valid_xy = [] map_indices = [] npp = 5 # [ll, ul, ur, lr, center] for i_ring in range(len(angs)): # expand angles to patch vertices these_angs = angs[i_ring].T patch_vertices = (np.tile(these_angs[:, :2], (1, npp)) + np.tile(sector_vertices[i_ring], (neta, 1))).reshape(npp * neta, 2) # duplicate ome array ome_dupl = np.tile(these_angs[:, 2], (npp, 1)).T.reshape(npp * neta, 1) # find vertices that all fall on the panel gVec_ring_l = anglesToGVec(np.hstack([patch_vertices, ome_dupl]), bHat_l=self.bvec) all_xy = gvecToDetectorXY(gVec_ring_l, self.rmat, rmat_s, ct.identity_3x3, self.tvec, tvec_s, tvec_c, beamVec=self.bvec) _, on_panel = self.clip_to_panel(all_xy) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(neta, npp), axis=1) patch_xys = all_xy.reshape(neta, 5, 2)[patch_is_on] idx = np.where(patch_is_on)[0] valid_ang.append(these_angs[patch_is_on, :2]) valid_xy.append(patch_xys[:, -1, :].squeeze()) map_indices.append(idx) pass # ??? is this option necessary? if full_output: return valid_ang, valid_xy, map_indices, eta else: return valid_ang, valid_xy
def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx, bMat, vInv, bVec, eVec, omePeriod, simOnly=False, return_value_flag=return_value_flag): """ """ npts = len(xyo_det) refineFlag = np.array(np.hstack([pFlag, dFlag]), dtype=bool) print refineFlag # pFull[refineFlag] = pFit/scl[refineFlag] pFull[refineFlag] = pFit if dFunc is not None: dParams = pFull[-len(dFlag):] xys = dFunc(xyo_det[:, :2], dParams) else: xys = xyo_det[:, :2] # detector quantities wavelength = pFull[0] rMat_d = xf.makeDetectorRotMat(pFull[1:4]) tVec_d = pFull[4:7].reshape(3, 1) # sample quantities chi = pFull[7] tVec_s = pFull[8:11].reshape(3, 1) # crystal quantities rMat_c = xf.makeRotMatOfExpMap(pFull[11:14]) tVec_c = pFull[14:17].reshape(3, 1) # stretch tensor comp matrix from MV notation in SAMPLE frame vMat_s = mutil.vecMVToSymm(vInv) # g-vectors: # 1. calculate full g-vector components in CRYSTAL frame from B # 2. rotate into SAMPLE frame and apply stretch # 3. rotate back into CRYSTAL frame and normalize to unit magnitude # IDEA: make a function for this sequence of operations with option for # choosing ouput frame (i.e. CRYSTAL vs SAMPLE vs LAB) gVec_c = np.dot(bMat, hkls_idx) gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) gHat_c = mutil.unitVector(np.dot(rMat_c.T, gVec_s)) match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): raise RuntimeError("infeasible pFull: may want to scale" + "back finite difference step size") # return values if simOnly: # return simulated values retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: # return residual vector # IDEA: try angles instead of xys? diff_vecs_xy = calc_xy - xys[:, :2] diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2]) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1)]).flatten() if return_value_flag == 1: # return scalar sum of squared residuals retval = sum(abs(retval)) elif return_value_flag == 2: # return DOF-normalized chisq # TODO: check this calculation denom = npts - len(pFit) - 1. if denom != 0: nu_fac = 1. / denom else: nu_fac = 1. nu_fac = 1 / (npts - len(pFit) - 1.) retval = nu_fac * sum(retval**2) return retval
## print "Maximum disagreement in eta: %f"%maxDiff_eta # maxDiff_gVec = np.linalg.norm(np.sqrt(np.sum(np.asarray(gVec_l1.T-gVec_l2)**2,1)),np.inf) # print "Maximum disagreement in gVec: %f"%maxDiff_gVec gVec_c1 = np.dot(rMat_c.T,np.dot(rMat_s.T,gVec_l1)) gVec_c2 = np.ascontiguousarray(np.dot(rMat_c.T,np.dot(rMat_s.T,gVec_l2.T)).T) start3 = timer() # time this xy1 = xf.gvecToDetectorXY(gVec_c1,rMat_d,rMat_s,rMat_c,tVec_d,tVec_s,tVec_c,beamVec=bVec_ref) elapsed3 = (timer() - start3) print "Time for Python gvecToDetectorXY: %f"%(elapsed3) start4 = timer() # time this xy2 = xfcapi.gvecToDetectorXY(gVec_c2,rMat_d,rMat_s,rMat_c,tVec_d,tVec_s,tVec_c,beamVec=bVec_ref) elapsed4 = (timer() - start4) print "Time for CAPI gvecToDetectorXY: %f"%(elapsed4) print 'cudadevice: ', numba.cuda.get_current_device().name # setup or numba version # should be able to run in nopython mode bHat_l = np.zeros(3) nVec_l = np.zeros(3) P0_l = np.zeros(3) P2_l = np.zeros(3) P2_d = np.zeros(3) P3_l = np.zeros(3)
neta = int(eta_range/eta_size) tth_vec = tth_size*(np.arange(ntth) - 0.5*ntth - 1) + tth0 eta_vec = eta_size*(np.arange(neta) - 0.5*neta - 1) + eta0 angpts = np.meshgrid(eta_vec, tth_vec, indexing='ij') gpts = xfc.anglesToGVec( np.vstack([ np.radians(angpts[1].flatten()), np.radians(angpts[0].flatten()), np.zeros(neta*ntth) ]).T, bHat_l=d.bvec) xypts = xfc.gvecToDetectorXY( gpts, d.rmat, np.eye(3), np.eye(3), d.tvec, np.zeros(3), np.zeros(3), beamVec=d.bvec) img2 = d.interpolate_bilinear(xypts, average_frame).reshape(neta, ntth) img3 = copy.deepcopy(img2) borders = np.isnan(img2) img2[borders] = 0. img3[borders] = 0. img3 += np.min(img3) + 1 img3 = np.log(img3) img3[borders] = np.nan extent = ( np.min(angpts[1]), np.max(angpts[1]), np.min(angpts[0]), np.max(angpts[0])
def make_reflection_patches(instr_cfg, tth_eta, ang_pixel_size, omega=None, tth_tol=0.2, eta_tol=1.0, rMat_c=np.eye(3), tVec_c=np.c_[0., 0., 0.].T, distortion=distortion, npdiv=1, quiet=False, compute_areas_func=compute_areas): """ prototype function for making angular patches on a detector panel_dims are [(xmin, ymin), (xmax, ymax)] in mm pixel_pitch is [row_size, column_size] in mm DISTORTION HANDING IS STILL A KLUDGE patches are: delta tth d ------------- ... ------------- e | x | x | x | ... | x | x | x | l ------------- ... ------------- t . a . . e ------------- ... ------------- t | x | x | x | ... | x | x | x | a ------------- ... ------------- """ npts = len(tth_eta) # detector frame rMat_d = xfcapi.makeDetectorRotMat( instr_cfg['detector']['transform']['tilt_angles']) tVec_d = np.r_[instr_cfg['detector']['transform']['t_vec_d']] pixel_size = instr_cfg['detector']['pixels']['size'] frame_nrows = instr_cfg['detector']['pixels']['rows'] frame_ncols = instr_cfg['detector']['pixels']['columns'] panel_dims = ( -0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]], 0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]]) row_edges = np.arange(frame_nrows + 1)[::-1] * pixel_size[1] + panel_dims[0][1] col_edges = np.arange(frame_ncols + 1) * pixel_size[0] + panel_dims[0][0] # sample frame chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.r_[instr_cfg['oscillation_stage']['t_vec_s']] # data to loop # ...WOULD IT BE CHEAPER TO CARRY ZEROS OR USE CONDITIONAL? if omega is None: full_angs = np.hstack([tth_eta, np.zeros((npts, 1))]) else: full_angs = np.hstack([tth_eta, omega.reshape(npts, 1)]) patches = [] for angs, pix in zip(full_angs, ang_pixel_size): # need to get angular pixel size rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) ndiv_tth = npdiv * np.ceil(tth_tol / np.degrees(pix[0])) ndiv_eta = npdiv * np.ceil(eta_tol / np.degrees(pix[1])) tth_del = np.arange( 0, ndiv_tth + 1) * tth_tol / float(ndiv_tth) - 0.5 * tth_tol eta_del = np.arange( 0, ndiv_eta + 1) * eta_tol / float(ndiv_eta) - 0.5 * eta_tol # store dimensions for convenience # * etas and tths are bin vertices, ome is already centers sdims = [len(eta_del) - 1, len(tth_del) - 1] # meshgrid args are (cols, rows), a.k.a (fast, slow) m_tth, m_eta = np.meshgrid(tth_del, eta_del) npts_patch = m_tth.size # calculate the patch XY coords from the (tth, eta) angles # * will CHEAT and ignore the small perturbation the different # omega angle values causes and simply use the central value gVec_angs_vtx = np.tile(angs, (npts_patch, 1)) \ + np.radians( np.vstack([m_tth.flatten(), m_eta.flatten(), np.zeros(npts_patch) ]).T ) # will need this later rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) # FOR ANGULAR MESH conn = gutil.cellConnectivity(sdims[0], sdims[1], origin='ll') gVec_c = xf.anglesToGVec(gVec_angs_vtx, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval_vtx = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval_vtx = distortion[0](xy_eval_vtx, distortion[1], invert=True) pass areas = compute_areas_func(xy_eval_vtx, conn) # EVALUATION POINTS # * for lack of a better option will use centroids tth_eta_cen = gutil.cellCentroids(np.atleast_2d(gVec_angs_vtx[:, :2]), conn) gVec_angs = np.hstack( [tth_eta_cen, np.tile(angs[2], (len(tth_eta_cen), 1))]) gVec_c = xf.anglesToGVec(gVec_angs, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval = distortion[0](xy_eval, distortion[1], invert=True) pass row_indices = gutil.cellIndices(row_edges, xy_eval[:, 1]) col_indices = gutil.cellIndices(col_edges, xy_eval[:, 0]) patches.append( ((gVec_angs_vtx[:, 0].reshape(m_tth.shape), gVec_angs_vtx[:, 1].reshape(m_tth.shape)), (xy_eval_vtx[:, 0].reshape(m_tth.shape), xy_eval_vtx[:, 1].reshape(m_tth.shape)), conn, areas.reshape(sdims[0], sdims[1]), (row_indices.reshape(sdims[0], sdims[1]), col_indices.reshape(sdims[0], sdims[1])))) pass return patches
eta_d2 = dangs2[0][1] gVec_l2 = dangs2[1] elapsed2 = (time.clock() - start2) print "Time for CAPI detectorXYToGvec: %f"%(elapsed2) maxDiff_tTh = np.linalg.norm(tTh_d1-tTh_d2,np.inf) print "Maximum disagreement in tTh: %f"%maxDiff_tTh maxDiff_eta = np.linalg.norm(eta_d1-eta_d2,np.inf) print "Maximum disagreement in eta: %f"%maxDiff_eta maxDiff_gVec = np.linalg.norm(np.sqrt(np.sum(np.asarray(gVec_l1.T-gVec_l2)**2,1)),np.inf) print "Maximum disagreement in gVec: %f"%maxDiff_gVec gVec_c1 = np.dot(rMat_c.T,np.dot(rMat_s.T,gVec_l1)) gVec_c2 = np.ascontiguousarray(np.dot(rMat_c.T,np.dot(rMat_s.T,gVec_l2.T)).T) start3 = time.clock() # time this xy1 = xf.gvecToDetectorXY(gVec_c1,rMat_d,rMat_s,rMat_c,tVec_d,tVec_s,tVec_c,beamVec=bVec_ref) elapsed3 = (time.clock() - start3) print "Time for Python gvecToDetectorXY: %f"%(elapsed3) maxDiff_xy = np.linalg.norm(np.sqrt(np.sum(np.asarray(XY-xy1)**2,1)),np.inf) print "Maximum disagreement in gVec: %f"%maxDiff_xy start4 = time.clock() # time this xy2 = xfcapi.gvecToDetectorXY(gVec_c2,rMat_d,rMat_s,rMat_c,tVec_d,tVec_s,tVec_c,beamVec=bVec_ref) elapsed4 = (time.clock() - start4) print "Time for CAPI gvecToDetectorXY: %f"%(elapsed4) maxDiff_xy = np.linalg.norm(np.sqrt(np.sum(np.asarray(XY-xy2)**2,1)),np.inf) print "Maximum disagreement in gVec: %f"%maxDiff_xy