def test_datetime(self): obj = datetime(2013, 3, 27, 23, 5) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert obj == jobj eastern = pytz.timezone('US/Eastern') obj = datetime(2013, 3, 27, 23, 5, tzinfo=eastern) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert obj == jobj
def test_date(self): obj = date(2013, 3, 27) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert obj == jobj
def nd(image_array_or_url, category_index=None, get_multilabel_results=None, get_combined_results=None, get_layer_output=None, get_all_graylevels=None, threshold=None): params = {} if category_index: params['categoryIndex'] = category_index if get_multilabel_results: params['getMultilabelResults'] = get_multilabel_results if get_combined_results: params['getCombinedResults'] = get_combined_results if get_layer_output: params['getLayerOutput'] = get_layer_output if get_all_graylevels: params['getAllGrayLevels'] = get_all_graylevels if threshold: params['threshold'] = threshold # if get_yolo: # params['getYolo'] = get_yolo if params == {}: params = None #not sure if this is necesary but the original line (below) made it happen #params = params={"categoryIndex": category_index} if category_index else None print('params coming into neurodoll falcon client:' + str(params)) data = msgpack.dumps({"image": image_array_or_url}) resp = requests.post(CLASSIFIER_ADDRESS, data=data, params=params) return msgpack.loads(resp.content)
def on_post(self, req, resp): t1 = time() category = req.get_param('category') col_name = req.get_param('col_name') ret = {"success": False} key = col_name + '.' + category forest_handle = self.forests[key] try: data = msgpack.loads(req.stream.read()) fp = data.get("fingerprint") ret['id_list'] = forest_handle.get_nns_by_vector(fp, 1000) if ret["id_list"] is not None: ret["success"] = True else: ret["error"] = "No list" except Exception as e: ret["error"] = str(e) t2 = time() duration = t2 - t1 ret['duration'] = duration resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def pd(image_arrary_or_url): data = msgpack.dumps({"image": image_arrary_or_url}) resp = requests.post(CLASSIFIER_ADDRESS, data) if 200 <= resp.status_code < 300: return msgpack.loads(resp.content) else: raise Exception('PD FAILED', resp.content)
def on_post(self, req, resp): category_to_look_for = req.get_param('catToLookFor') print('category to look for:' + str(category_to_look_for)) ret = {"success": False} try: data = msgpack.loads(req.stream.read()) img = data.get("image") except Exception: ret["error"] = traceback.format_exc() try: mnc_mask, mnc_box, im, im_name, orig_im, boxes, scalefactor, superimpose_name = mnc.mnc_pixlevel_detect( img) # mnc_mask, mnc_box = mnc.mnc_pixlevel_detect(img) if mnc_mask is not None: ret["success"] = True ret['mnc_output'] = { "mask": mnc_mask, "box": mnc_box, "superimposed_image": im, "image_name": im_name, "original_image": orig_im, "bounding_boxes": boxes, "scale_factor": scalefactor } except Exception: ret["error"] = traceback.format_exc() resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def sleeve_distance(main_vector, candidate_vector): data = msgpack.dumps({ "function": "distance", 'main_vector': main_vector, 'candidate_vector': candidate_vector }) resp = requests.post(CLASSIFIER_ADDRESS, data=data) return msgpack.loads(resp.content)
def labelize(image_or_url): try: data = msgpack.dumps({"image": image_or_url}) resp = requests.post(LABEL_ADDRESS, data) labels = msgpack.loads(resp.content)["labels"] return {key: float(val) for key, val in labels.items()} except: return []
def test_list(self): obj = [1, 2, 3] mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, list) assert obj == jobj assert isinstance(jobj, list)
def test_int(self): obj = 1 mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, int) assert obj == jobj assert isinstance(jobj, int)
def detect(img_arr, roi=[]): print('using addr ' + str(CLASSIFIER_ADDRESS)) data = {"image": img_arr} if roi: print "Make sure roi is a list in this order [x1, y1, x2, y2]" data["roi"] = roi serialized_data = msgpack.dumps(data) resp = requests.post(CLASSIFIER_ADDRESS, data=serialized_data) return msgpack.loads(resp.content)
def test_set(self): obj = set([1, 2, 3]) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, set) assert obj == jobj assert isinstance(jobj, set)
def test_str(self): obj = "abc" mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, (str, unicode)) assert obj == jobj assert isinstance(jobj, (str, unicode))
def test_complex(self): obj = complex(123) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, complex) assert obj == jobj assert isinstance(jobj, complex)
def test_dict(self): obj = {'a': 1, 'b': 2, 'c': 3} mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, dict) assert obj == jobj assert isinstance(jobj, dict)
def test_float(self): obj = 3.14159 mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, float) assert obj == jobj assert isinstance(jobj, float)
def test_dict_int_keys(self): obj = {1: 1, 2: 2, 3: 3} mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj == mobj assert isinstance(mobj, dict) # we cannot test this as JSON will convert int keys to strings #assert obj == jobj assert isinstance(jobj, dict)
def mnc(image_array_or_url, cat_to_look_for='person'): params = {} if cat_to_look_for: params['catToLookFor'] = cat_to_look_for if params == {}: params = None #not sure if this is necesary but the original line (below) made it happen #params = params={"categoryIndex": category_index} if category_index else None print('params coming into mnc falcon client:' + str(params)) data = msgpack.dumps({"image": image_array_or_url}) resp = requests.post(CLASSIFIER_ADDRESS, data=data, params=params) return msgpack.loads(resp.content)
def test_npgeneric(self): obj = np.float32(1) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.dtype == np.float32 assert obj == mobj assert obj.dtype == mobj.dtype assert isinstance(mobj, np.generic) assert obj == jobj assert obj.dtype == jobj.dtype assert isinstance(jobj, np.generic)
def test_serialisable(self): class SerialisableObject(jaweson.Serialisable): def __init__(self): self.a = 1 obj = SerialisableObject() mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.a == 1 assert obj.a == mobj.a assert obj.a == jobj.a
def test_serialisable_constructor(self): class SerialisableConstructorObject(jaweson.Serialisable): def __init__(self, a): self.a = a obj = SerialisableConstructorObject(2) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.a == 2 assert obj.a == mobj.a assert obj.a == jobj.a
def bring_forth_the_hydra(image_array_or_url, gpu=1): params = {} if gpu: params['gpu'] = gpu if params == {}: params = None #not sure if this is necesary but the original line (below) made it happen #params = params={"categoryIndex": category_index} if category_index else None print('params coming into hydra:' + str(params)) # data = msgpack.dumps({"image": image_array_or_url}) data = {"image": image_array_or_url} resp = requests.post(CLASSIFIER_ADDRESS, data=data, params=params) return msgpack.loads(resp.content)
def test_ndarray(self): obj = np.array([1, 2, 3], dtype=np.float32) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.dtype == np.float32 assert (obj == mobj).all() assert obj.dtype == mobj.dtype assert isinstance(mobj, np.ndarray) assert (obj == jobj).all() assert obj.dtype == jobj.dtype assert isinstance(jobj, np.ndarray)
def detect_hls(img_arr, roi=[]): print('using addr ' + str(YOLO_HLS_ADDRESS)) data = {"image": img_arr} if roi: print "Make sure roi is a list in this order [x1, y1, x2, y2]" data["roi"] = roi serialized_data = msgpack.dumps(data) # resp = requests.post(YOLO_HLS_ADDRESS, data=data) resp = requests.post(YOLO_HLS_ADDRESS, data=serialized_data) print('resp from hls:' + str(resp)) # print('respcont from hls:'+str(resp.content)) return msgpack.loads(resp.content)
def on_put(self, req, resp): ret = {"success": False} try: data = msgpack.loads(req.stream.read()) collection_name = data.get("collection") category = data.get("category") rebuild_index(collection_name, category) ret["success"] = True except Exception as e: ret["error"] = str(e) resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def on_post(self, req, resp): ret = {"success": False} try: data = msgpack.loads(req.stream.read()) ret["data"] = self.feature.execute(**data) ret["success"] = True resp.status = falcon.HTTP_200 except Exception as e: ret["error"] = str(e) ret["trace"] = traceback.format_exc() resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack'
def test_class_variable(self): class ClassVariableObject(jaweson.Serialisable): __classname = 'TestImHere' a = 1 obj = ClassVariableObject() mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.a == 1 assert obj.a == mobj.a assert obj.a == jobj.a assert '_Serialisable__a' not in json.dumps(obj)
def on_post(self, req, resp): ret = {"success": False} try: data = msgpack.loads(req.stream.read()) collection = data.get("collection") category = data.get("category") fp = data.get("fp") port = lookup_table[collection][category]['port'] print(port) ret = nmslib_find_top_k(fp, 1000, port, category) print('done') except Exception as e: ret["error"] = str(e) resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def test_dodgy_constructor(self): class DodgyConstructor(jaweson.Serialisable): def __init__(self, a, b): # flip the order self.a = b self.b = a obj = DodgyConstructor(1, 2) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.a == 2 assert obj.b == 1 assert obj.a == mobj.a assert obj.b == mobj.b assert obj.a == jobj.a assert obj.b == jobj.b
def test_modified_class_variable(self): class ClassVariableOverrideObject(jaweson.Serialisable): a = 1 def __init__(self): self.a = 2 obj = ClassVariableOverrideObject() mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.a == 2 assert obj.a == mobj.a assert obj.a == jobj.a assert '_Serialisable__a' not in json.dumps(obj) assert 'a' in json.dumps(obj)
def on_post(self, req, resp): ret = {"success": False} try: data = msgpack.loads(req.stream.read()) image = data.get("image_or_url") face = data.get("face") print('gender_app nEURALrESOURCE got face {}'.format(face)) ret["gender"] = new_genderDetector.theDetector(image, face) if ret["gender"] is not None: ret["success"] = True else: ret["error"] = "NN returned None, FACE=" + str(face) ret["face"] = face except Exception as e: ret["error"] = str(e) resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def on_post(self, req, resp): # print('got POST') ret = {"success": False} try: # print(req.stream.read()) data = msgpack.loads(req.stream.read()) print(1) fp = data.get("fp") print(2) k = data.get("k") print(3) ret["data"] = load_n_search.find_to_k(fp, k, self.nmslib_vector, self.index) ret["success"] = True except Exception as e: ret["error"] = str(e) print(ret['success']) # resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def test_hierarchy(self): class Node(jaweson.Serialisable): def __init__(self, name, child=None): self.name = name self.child = child obj = Node(1, Node(2, Node(3))) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.name == 1 assert obj.child.name == 2 assert obj.child.child.name == 3 assert isinstance(obj, Node) assert obj.name == mobj.name assert obj.child.name == mobj.child.name assert obj.child.child.name == mobj.child.child.name assert obj.name == jobj.name assert obj.child.name == jobj.child.name assert obj.child.child.name == jobj.child.child.name
def on_post(self, req, resp): ret = {"success": False} try: data = msgpack.loads(req.stream.read()) img = data.get("image") # mask_np, label_dict, pose_np, filename ret["mask"], ret["label_dict"], ret["pose"], ret[ "filename"] = new_pd.parse(img, _eng=eng) if ret["mask"] is not None: ret["success"] = True else: ret["error"] = "No mask from PD" except Exception as e: ret["error"] = str(e) resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def on_post(self, req, resp): print "Reached on_post" gpu = req.get_param('gpu') ret = {"success": False} try: data = msgpack.loads(req.stream.read()) img = data.get("image") output = multilabel_from_binaries3.get_multiple_single_label_outputs(img) ret["output"] = output if ret["output"] is not None: ret["success"] = True else: ret["error"] = "No output from mlb" except Exception as e: traceback.print_exc() ret["error"] = traceback.format_exc() resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200
def test_custom_serialiser(self): class CustomSerialiserObject(jaweson.Serialisable): @classmethod def to_json(cls, obj): return {'c': obj.a, 'd': obj.b} @classmethod def from_json(cls, obj): return cls(int(obj['c']), int(obj['d'])) def __init__(self, a, b): self.a = a self.b = b obj = CustomSerialiserObject(1, 2) mobj = msgpack.loads(msgpack.dumps(obj)) jobj = json.loads(json.dumps(obj)) assert obj.a == 1 assert obj.b == 2 assert obj.a == mobj.a assert obj.b == mobj.b assert obj.a == jobj.a assert obj.b == jobj.b
def get_length(image_or_url): data = msgpack.dumps({"image_or_url": image_or_url}) resp = requests.post(CLASSIFIER_ADDRESS, data=data) return msgpack.loads(resp.content)
def genderize(image_or_url, face): data = msgpack.dumps({"image_or_url": image_or_url, "face": face}) resp = requests.post(GENDER_ADDRESS, data) return msgpack.loads(resp.content)
#this is doing a post, which the javascript is doing , so I don't think #we need this file at all... from jaweson import msgpack import requests # CLASSIFIER_ADDRESS = "http://169.45.147.210:8083/pixlevel_annotator" #thats brainim60 params = {} if params == {}: params = None #not sure if this is necesary but the original line (below) made it happen #params = params={"categoryIndex": category_index} if category_index else None print('params coming into mlb:'+str(params)) #print('image coming into mlb:'+str(image_array_or_url)) data = msgpack.dumps({"image": image_array_or_url}) resp = requests.post(CLASSIFIER_ADDRESS, data=data, params=params) return msgpack.loads(resp.content)
def get(feature, image_or_url, **kwargs): kwargs.update({"image_or_url": image_or_url}) data = msgpack.dumps(kwargs) resp = requests.post(DEPLOYMENTS[feature]["url"], data=data) return msgpack.loads(resp.content)
def on_post(self, req, resp): print "Reached on_post" ret = {"success": False} # Query Params threshold = req.get_param('threshold') get_multilabel_results = req.get_param_as_bool('getMultilabelResults') get_combined_results = req.get_param_as_bool('getCombinedResults') image_url = req.get_param('imageUrl') try: if image_url: img = image_url # Utils.get_cv2_img_array(image_url) else: data = msgpack.loads(req.stream.read()) img = data.get("image") # multilabel alone if get_multilabel_results: multilabel_output = neurodoll.get_multilabel_output(img) ret['multilabel_output'] = multilabel_output print('multilabel output:' + str(multilabel_output)) if multilabel_output is not None: ret["success"] = True # ret["success"] = bool(multilabel_output) # combined multilabel and nd if get_combined_results: combined_output = None combined_output = neurodoll.combine_neurodoll_v3labels_and_multilabel( img) ret['combined_output'] = combined_output ret['mask'] = combined_output if combined_output is not None: ret["bbs"] = imutils.mask_to_rects(ret['mask']) ret["success"] = True # yonti style - single category mask ret["label_dict"] = constants.ultimate_21_dict # regular neurodoll call if not get_multilabel_results and not get_combined_results and not category_index: print "No special params, inferring..." ret["mask"], labels = neurodoll.infer_one(img) if ret["mask"] is not None: ret["success"] = True ret["bbs"] = imutils.mask_to_rects(ret["mask"]) else: ret["error"] = "No mask from ND" except Exception as e: traceback.print_exc() ret["error"] = traceback.format_exc() url = req.get_param('image') ret['url'] = url resp.data = msgpack.dumps(ret) resp.content_type = 'application/x-msgpack' resp.status = falcon.HTTP_200 return (ret)
def get_sleeve(image_or_url): data = msgpack.dumps({"function": "execute", "image_or_url": image_or_url}) resp = requests.post(CLASSIFIER_ADDRESS, data=data) return msgpack.loads(resp.content)
def nmslib_find_top_k(fp, k, port, category): data = msgpack.dumps({"fp": fp, "k": k}) category_server = SERVER + str(port) + '/' + category resp = requests.post(category_server, data=data) return msgpack.loads(resp.content)
def pd(fp, col_name, category): params = {"category": category, "col_name" : col_name} data = msgpack.dumps({"fingerprint": fp}) resp = requests.post(CLASSIFIER_ADDRESS, data=data, params=params) return msgpack.loads(resp.content)
def deserialize(msg): enc_np = msgpack.loads(msg) return cv2.imdecode(enc_np, cv2.IMREAD_COLOR)
return msgpack.dumps(enc_np) def deserialize(msg): enc_np = msgpack.loads(msg) return cv2.imdecode(enc_np, cv2.IMREAD_COLOR) arr_cv2 = url_to_np_array( "http://fazz.co/src/img/demo/gettyimages-492504614.jpg") f, enc_jpg_np = cv2.imencode('.jpg', arr_cv2, [cv2.IMWRITE_JPEG_QUALITY, 100]) f, enc_png_np = cv2.imencode('.png', arr_cv2, [cv2.IMWRITE_PNG_COMPRESSION, 9]) start = time.time() msg = msgpack.dumps(arr_cv2) arr = msgpack.loads(msg) print time.time() - start start = time.time() msg = msgpack.dumps( cv2.imencode('.png', arr_cv2, [cv2.IMWRITE_PNG_COMPRESSION, 9])[1]) arr = cv2.imdecode(msgpack.loads(msg), cv2.IMREAD_COLOR) print time.time() - start def data_uri_to_cv2_img(uri): encoded_data = uri.split(',')[1] nparr = np.fromstring(encoded_data.decode('base64'), np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) return img