def _unfold(self, op: Operator, n: int) -> Optional[Operator]: """ Unroll all possible operators from the grammar `g` starting from non-terminal `op` after `n` derivations. Parameters ---------- op : Operator starting rule (e.g., `g.start`) n : int number of derivations Returns ------- Optional[Operator] """ if isinstance(op, BasePipeline): steps = op.steps() new_steps = [self._unfold(sop, n) for sop in op.steps()] step_map = {steps[i]: new_steps[i] for i in range(len(steps))} new_edges = [(step_map[s], step_map[d]) for s, d in op.edges()] if not None in new_steps: return get_pipeline_of_applicable_type(new_steps, new_edges, True) return None if isinstance(op, OperatorChoice): steps = [ s for s in (self._unfold(sop, n) for sop in op.steps()) if s ] return make_choice(*steps) if steps else None if isinstance(op, NonTerminal): return self._unfold(self._variables[op.name()], n - 1) if n > 0 else None if isinstance(op, IndividualOp): return op assert False, f"Unknown operator {op}"
def _sample(self, op: Operator, n: int) -> Optional[Operator]: """ Sample the grammar `g` starting from `g.start`, that is, choose one element at random for each possible choices. Parameters ---------- op : Operator starting rule (e.g., `g.start`) n : int number of derivations Returns ------- Optional[Operator] """ if isinstance(op, BasePipeline): steps = op.steps() new_steps = [self._sample(sop, n) for sop in op.steps()] step_map = {steps[i]: new_steps[i] for i in range(len(steps))} new_edges = [(step_map[s], step_map[d]) for s, d in op.edges()] if not None in new_steps: return get_pipeline_of_applicable_type(new_steps, new_edges, True) return None if isinstance(op, OperatorChoice): return self._sample(random.choice(op.steps()), n) if isinstance(op, NonTerminal): return self._sample(getattr(self, op.name()), n - 1) if n > 0 else None if isinstance(op, IndividualOp): return op assert False, f"Unknown operator {op}"
def set_operator_params(op: Ops.Operator, **impl_params) -> Ops.TrainableOperator: """May return a new operator, in which case the old one should be overwritten """ if isinstance(op, Ops.PlannedIndividualOp): main_params, partitioned_sub_params = partition_sklearn_params( impl_params) hyper = op._hyperparams if hyper is None: hyper = {} # we set the sub params first for sub_key, sub_params in partitioned_sub_params.items(): set_structured_params(sub_key, sub_params, hyper) # we have now updated any nested operators # (if this is a higher order operator) # and can work on the main operator all_params = {**main_params, **hyper} return op.set_params(**all_params) elif isinstance(op, Ops.BasePipeline): steps = op.steps() main_params, partitioned_sub_params = partition_sklearn_params( impl_params) assert not main_params, f"Unexpected non-nested arguments {main_params}" found_names: Dict[str, int] = {} step_map: Dict[Ops.Operator, Ops.TrainableOperator] = {} for s in steps: name = s.name() name_index = 0 params: Dict[str, Any] = {} if name in found_names: name_index = found_names[name] + 1 found_names[name] = name_index uname = make_indexed_name(name, name_index) if uname in partitioned_sub_params: params = partitioned_sub_params[uname] else: found_names[name] = 0 uname = make_degen_indexed_name(name, 0) if uname in partitioned_sub_params: params = partitioned_sub_params[uname] assert name not in partitioned_sub_params elif name in partitioned_sub_params: params = partitioned_sub_params[name] new_s = set_operator_params(s, **params) if s != new_s: step_map[s] = new_s # make sure that no parameters were passed in for operations # that are not actually part of this pipeline for k in partitioned_sub_params.keys(): n, i = get_name_and_index(k) assert n in found_names and i <= found_names[n] if step_map: op._subst_steps(step_map) if not isinstance(op, Ops.TrainablePipeline): # As a result of choices made, we may now be a TrainableIndividualOp ret = Ops.make_pipeline_graph(op.steps(), op.edges(), ordered=True) if not isinstance(ret, Ops.TrainableOperator): assert False return ret else: return op else: assert isinstance(op, Ops.TrainableOperator) return op elif isinstance(op, Ops.OperatorChoice): choices = op.steps() choice_index: int choice_params: Dict[str, Any] if len(choices) == 1: choice_index = 0 chosen_params = impl_params else: (choice_index, chosen_params) = partition_sklearn_choice_params(impl_params) assert 0 <= choice_index and choice_index < len(choices) choice: Ops.Operator = choices[choice_index] new_step = set_operator_params(choice, **chosen_params) # we remove the OperatorChoice, replacing it with the branch that was taken return new_step else: assert False, f"Not yet supported operation of type: {op.__class__.__name__}"