Exemple #1
0
 def _unfold(self, op: Operator, n: int) -> Optional[Operator]:
     """ Unroll all possible operators from the grammar `g` starting from    non-terminal `op` after `n` derivations.
     
     Parameters
     ----------
     op : Operator
         starting rule (e.g., `g.start`)
     n : int
         number of derivations
     
     Returns
     -------
     Optional[Operator]
     """
     if isinstance(op, BasePipeline):
         steps = op.steps()
         new_steps = [self._unfold(sop, n) for sop in op.steps()]
         step_map = {steps[i]: new_steps[i] for i in range(len(steps))}
         new_edges = [(step_map[s], step_map[d]) for s, d in op.edges()]
         if not None in new_steps:
             return get_pipeline_of_applicable_type(new_steps, new_edges,
                                                    True)
         return None
     if isinstance(op, OperatorChoice):
         steps = [
             s for s in (self._unfold(sop, n) for sop in op.steps()) if s
         ]
         return make_choice(*steps) if steps else None
     if isinstance(op, NonTerminal):
         return self._unfold(self._variables[op.name()], n -
                             1) if n > 0 else None
     if isinstance(op, IndividualOp):
         return op
     assert False, f"Unknown operator {op}"
Exemple #2
0
 def _sample(self, op: Operator, n: int) -> Optional[Operator]:
     """
     Sample the grammar `g` starting from `g.start`, that is, choose one element at random for each possible choices.
     
     Parameters
     ----------
     op : Operator
         starting rule (e.g., `g.start`)
     n : int
         number of derivations
     
     Returns
     -------
     Optional[Operator]
     """
     if isinstance(op, BasePipeline):
         steps = op.steps()
         new_steps = [self._sample(sop, n) for sop in op.steps()]
         step_map = {steps[i]: new_steps[i] for i in range(len(steps))}
         new_edges = [(step_map[s], step_map[d]) for s, d in op.edges()]
         if not None in new_steps:
             return get_pipeline_of_applicable_type(new_steps, new_edges,
                                                    True)
         return None
     if isinstance(op, OperatorChoice):
         return self._sample(random.choice(op.steps()), n)
     if isinstance(op, NonTerminal):
         return self._sample(getattr(self, op.name()), n -
                             1) if n > 0 else None
     if isinstance(op, IndividualOp):
         return op
     assert False, f"Unknown operator {op}"